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WHO ARE WE?



WHAT IS THIS TUTORIAL ABOUT?
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Deep 
Learning

CL

We will look at how Concept Learning (CL) can be used to design interpretable Deep Neural Networks



TUTORIAL GOALS
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Our main goals for this tutorial are threefold:

1. Provide a non-exhaustive but well-rounded overview of concept 

learning (CL).

2. Convince you that concept representations can be very useful 

for designing powerful but interpretable neural models.

3. Bring together a variety of resources (surveys, method papers, 

libraries, etc.) to facilitate access to the current state of CL.



WHAT IS THIS TUTORIAL NOT ABOUT?
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WHAT IS THIS TUTORIAL NOT ABOUT?
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We will not have time to dive deep into:

1. “Traditional” explainable AI (XAI) methodologies

Example of LIME (taken from [1])

Example of GradCAM and other saliency methods (taken from [2])

[1] Ribeiro et al. ”’Why should i trust you?’ Explaining the predictions of any classifier." KDD (2016).
[2] Selvaraju, et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." ICCV (2017).

https://arxiv.org/abs/1602.04938
https://arxiv.org/pdf/1610.02391


WHAT IS THIS TUTORIAL NOT ABOUT?
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We will not have time to dive deep into:

1. “Traditional” explainable AI (XAI) methodologies

Link to Book

Interpretable Machine Learning
Christoph Molnar

[1] Molnar, Christoph. Interpretable machine learning. Lulu. com, 2020.

https://christophm.github.io/interpretable-ml-book/


WHAT IS THIS TUTORIAL NOT ABOUT?
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We will not have time to dive deep into:

1.

2. Deep philosophical aspects of explaining models

[1] Lipton, Zachary C. "The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery." Queue (2018).
[2] Galit Shmueli. "To Explain or to Predict?." Statist. Sci. 25 (3) 289 - 310, August 2010. https://doi.org/10.1214/10-STS330
[3] Bromberger, Sylvain. On what we know we don't know: Explanation, theory, linguistics, and how questions shape them. University of Chicago Press, 1992.

The Mythos of Interpretability
Lipton et al. (2018) [1]

To Explain or to Predict?
Galit (2018) [2]

Explanation Theory
Bromberger (1992) [3]

https://arxiv.org/abs/1606.03490
https://projecteuclid.org/journals/statistical-science/volume-25/issue-3/To-Explain-or-to-Predict/10.1214/10-STS330.full
https://arxiv.org/abs/2103.11251
https://web.stanford.edu/group/cslipublications/cslipublications/bromberger-corpus/On-What-We-Know-We-Dont-Know.pdf


WHAT IS THIS TUTORIAL NOT ABOUT?
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We will not have time to dive deep into:

1.

2.

3. Connections with Mechanistic Interpretability

[1] Olah, Chris, et al. "Zoom in: An introduction to circuits." Distill 5.3 (2020): e00024-001.

C
ir

c
u

it
s

Taken from [1]

https://distill.pub/2020/circuits/zoom-in/


WHAT IS THIS TUTORIAL NOT ABOUT?
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We will not have time to dive deep into:

1.

2.

3. Connections with Mechanistic Interpretability

[1] Cammarata, Nick, et al. "Thread: circuits." Distill 5.3 (2020): e24.
[2] Anthropic “Transformer Circuits Thread” found at https://transformer-circuits.pub/

Distill Circuits Thread Anthropic Circuits Thread

https://distill.pub/2020/circuits/
https://transformer-circuits.pub/
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1. Introduction
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6. Reasoning With Concepts

7. Future Directions

8. Q&A
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(10 mins)

17:50 – 18:00



TUTORIAL WEBSITE AND MATERIALS
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This tutorial’s slides, schedule, and resources are in our website:

https://conceptlearning.github.io/

https://conceptlearning.github.io/


TUTORIAL WEBSITE AND MATERIALS
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Throughout the tutorial, watch for QR codes to relevant references

Citation + Hyperlink
(if you download slides) QR code to paper/reference/extra material
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A SWISS ARMY KNIFE FOR AI

Artificial Intelligence (AI) has experienced a boom in the last decade 

driven by so-called Deep Neural Networks (DNNs)

[1] Image adapted from Deep Learning Courses at “https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python”

Goal: learn 𝑊1, 𝑏1, ⋯ 𝑊𝑚 , 𝑏𝑚  s.t. 𝑔𝑚 ∘ ⋯ ∘ 𝑔2 ∘ 𝑔1 𝒙 =  ො𝑦 ≈ 𝑦

𝑔1 𝒙

𝒙
𝑔2 ℎ1

𝑊1 𝑊2

ෝ𝒚

𝑔𝑖+1 𝒉𝑖 = 𝜎 𝑾𝑖+1𝒉𝑖 + 𝒃𝑖+1

𝒉𝟎

19

https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python


THE POWER OF SCALE

Scaling up DNNs can lead to expressive and generalisable models:

A LOT of data, 
money, time, 

and sweat

+ =

20

[1] Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." nature 529.7587 (2016): 484-489.
[2] OpenAI. "GPT-4 technical report." arXiv (2023).
[3] Jumper, John, et al. "Highly accurate protein structure prediction with AlphaFold." nature 596.7873 (2021): 583-589.

[4] Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." CVPR (2022).

https://www.nature.com/articles/nature16961
https://arxiv.org/abs/2303.08774
https://www.nature.com/articles/s41586-021-03819-2
https://arxiv.org/abs/2112.10752


THE BLACK-BOX PROBLEM

Scale, however, leads to notoriously complex models!

[1] Adapted from Graphcore, “Inside an AI ‘Brain’ – What does Machine Learning Look Like?” (2017) 21

https://www.graphcore.ai/posts/what-does-machine-learning-look-like


THE BLACK-BOX PROBLEM

Scale, however, leads to notoriously complex models!

DNNs are ”black-box” models

• Highly parametric
• Complex forward passes
• Continuous activations
• Sensitive to initial states 

and update rules

Deep Neural Networks
Black box Functions

Ԧ𝑥 ො𝑦≈

22



THE FLIP SIDE OF THE COIN

Blindly using black-box models can lead to all sorts of problems:

[1] Kashmir Hill, “Wrongfully Accused by an Algorithm.” The New York Times (2020).
[2] Rachel Goodman, “Why Amazon’s Automated Hiring Tool Discriminated Against Women.” ACLU (2018).
[3] Will Douglas Heaven, “Predictive policing algorithms are racist. They need to be dismantled.” MIT Technology Review (2020). 23

https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/


Blindly using black-box models can lead to all sorts of problems:

It’s not all bad news ☺

THE FLIP SIDE OF THE COIN

24

[1] Natasha Bernal, “IBM Watson AI criticised after giving 'unsafe' cancer treatment advice.” The Telegraph (2018).
[2] Kashmir Hill, “Wrongfully Accused by an Algorithm.” The New York Times (2020).
[3] Rachel Goodman, “Why Amazon’s Automated Hiring Tool Discriminated Against Women.” ACLU (2018).
[4] Will Douglas Heaven, “Predictive policing algorithms are racist. They need to be dismantled.” MIT Technology Review (2020).

https://www.telegraph.co.uk/technology/2018/07/27/ibm-watson-ai-criticised-giving-unsafe-cancer-treatment-advice/
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/


EXPLAINING DNNS

25

Recent advances in AI came with a rise in interest in making these 

models “interpretable”



This interest has manifested itself at the regulatory/legal level

EXPLAINING DNNS

27

General Data Protection Regulations (GDPR, 2016):

• “The data subject shall have the right not to be subject 
to a decision based solely on automated processing, 
including profiling,…” (Art. 22)

• The data subject has the right to “meaningful 
information about the logic involved” in the decision. 
(Art. 13 and 15)

EU AI Act (2024):

• “Any affected person subject to a decision which is 
taken by.. a high-risk AI system … shall have the right 
to obtain from the deployer clear and meaningful 
explanations (Art. 86)

[1] GDPR, EU. "Automated individual decision-making, including profiling." (2022).
[2] Act, EU Artificial Intelligence. "The EU Artificial Intelligence Act." (2024).

GDRP EU AI Act

https://gdpr-info.eu/art-22-gdpr/
https://artificialintelligenceact.eu/


EXPLAINING DNNS

28

Researchers in Explainable Artificial Intelligence (XAI*) have 

developed a significant number of methods to explain DNNs

(EU Horizon Program)(DARPA 2016)

*Not to be confused with a certain bird-related company



FIRST THINGS FIRST: TERMINOLOGY
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Welcome to the Wild West of XAI terminology

Confalonieri et al. (2020)

Gilpin et al. (2018)

Rudin et al. (2019)

Freiesleben et al. (2023)Goebel et al. (2018)

Transparency

Understandability

Barredo Arrieta et al. (2020)

Vilone et al. (2021)



FIRST THINGS FIRST: TERMINOLOGY

30

Here we will use some the following definitions by Gilpin et al. [1]:

• Explainability (why): the ability to answer questions of the form 

“why does this particular input lead to that particular output?”

• Interpretability (how): the ability to describe “the internals of a 

system in a way that is understandable to humans.”

[1] Gilpin et al. "Explaining explanations: An overview of interpretability of machine learning." DSAA (2018).



FEATURE AT TRIBUTION
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XAI methods have traditionally explained a model’s prediction by 

estimating how important each input feature is for the output

We call these feature importance or feature attribution methods

[1] Scott, M., and Lee Su-In. "A unified approach to interpreting model predictions." NeurIPS (2017).

SHAP (Scott et al., 2017)

https://arxiv.org/abs/1705.07874


SALIENCY: FEATURE AT TRIBUTION IN DNNS
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DNN-specific attribution methods are called saliency methods

𝜓 , , cat =

These are usually computed by measuring model sensitivity via its gradient 
𝜕𝑓 𝒙 𝑦

𝜕𝑥𝑖

𝑓 𝒙 ; 𝜃

[1] Example taken from Selvaraju et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." ICCV (2017).

𝒙
ො𝑦

https://arxiv.org/pdf/1610.02391


WHAT’S WRONG WITH FEATURE AT TRIBUTION?

33



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

1. Low-level features like individual pixels are not always 

semantically meaningful:

34[1] Andrey Armyagov/Shutterstock

Can you guess what this is?



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

1. Low-level features like individual pixels are not always 

semantically meaningful:

35[1] ZaZa Studio/Shutterstock

Limes!



WHAT’S WRONG WITH FEATURE AT TRIBUTION?

2. Saliency maps lack of actionability!

36

What does this really tell you about how the model made a prediction?

[1]Image adapted from Dombrowski et al. "Explanations can be manipulated and geometry is to blame." NeurIPS (2019). 

https://arxiv.org/abs/1906.07983


WHAT’S WRONG WITH FEATURE AT TRIBUTION?

3. Several saliency methods fail very simple sanity checks

37[1] Adebayo, Julius, et al. "Sanity checks for saliency maps." NeurIPS (2018). 

Random training labels do not always 
lead to random maps [1]

Random weights do not always lead to random maps [1]

https://arxiv.org/abs/1810.03292


WHAT’S WRONG WITH FEATURE AT TRIBUTION?

4. Saliency methods are susceptible to adversarial attacks [1,2]

38
[1] Dombrowski et al. "Explanations can be manipulated and geometry is to blame." NeurIPS (2019). 
[2] Also relevant Ghorbani et al. "Interpretation of neural networks is fragile." AAAI (2019).

https://arxiv.org/abs/1906.07983
https://arxiv.org/pdf/1710.10547


WHAT’S WRONG WITH FEATURE AT TRIBUTION?

How can we go around the limitations of feature attribution?

Here, we will focus on using so-called 

“concepts” to construct explanations

39



WHAT ARE CONCEP TS?

Concepts are high-level and semantically meaningful units of 

information

Concepts are terms or units of information used by domain experts 

to communicate or explain things to each another
40

Task: bird species

Explanation of the prediction:
- wing color
- beak length
- tail shape 



A MAP OF CONCEP T LEARNING

41
[1] For a more complete taxonomy, see Poeta et al. "Concept-based explainable artificial intelligence: A survey." arXiv (2023).

https://arxiv.org/abs/2312.12936


A MAP OF CONCEP T LEARNING
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In the first third of this tutorial, we will discuss supervised concept learning1/3



A MAP OF CONCEP T LEARNING
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The second third discusses unsupervised concept learning approaches2/3



A MAP OF CONCEP T LEARNING
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Finally, in the last third we discuss applications of CL to symbolic reasoning

+

Concepts Reasoning

3/3
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”Supervised” is a loaded term. In this tutorial’s context, 

”supervised” means a method has access to “concept” labels

These labels could come besides other downstream task “labels”

DIFFERENT LEVELS OF SUPERVISION

46

Dense binary vector annotations

𝒄 𝑖

lays eggs
has scales
has wings

eats only plants
eats meat

black wings
is colorful
has teeth

=

1
0
1
0
1
1
0
0

𝑥 𝑖

OR

Sparse sets of images containing a concept

𝑋𝑔𝑟𝑎𝑠𝑠

𝑋𝑠𝑡𝑟𝑖𝑝𝑒𝑠



POST-HOC CONCEP T LEARNING

47

We will start by looking into supervised post-hoc concept learning:

A trained DNN 𝑓 𝒙; 𝜃 Concept-based ExplanationsSparse concept annotations

𝑋𝑠𝑡𝑟𝑖𝑝𝑒𝑠
𝑋𝑔𝑟𝑎𝑠𝑠

Local
How important is “stripes” for a prediction?

Global
how important is “grass” for the class “cow”?

Given We Want
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Evidence suggests DNNs may predict based on concepts

[1] Bau, David, et al. "Network dissection: Quantifying interpretability of deep visual representations." CVPR (2017).

WHY SHOULD WE EVEN AT TEMP T THIS?

https://arxiv.org/abs/1704.05796


Evidence suggests DNNs may predict based on concepts

WHY SHOULD WE EVEN AT TEMP T THIS?

Activating Samples

[1] Examples taken from Olah et al. "Feature visualization." Distill 2.11 (2017).

“Snout” Neuron?

49

https://distill.pub/2017/feature-visualization/


Evidence suggests DNNs may predict based on concepts

WHY SHOULD WE EVEN AT TEMP T THIS?

Activating Samples Neuron Maximisation

[1] Examples taken from Olah et al. "Feature visualization." Distill 2.11 (2017).

“Snout” Neuron?

50

https://distill.pub/2017/feature-visualization/
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Concepts may not be always localised to specific neurons/maps 

but they may be distributed across the DNN’s latent space

[1] Fong et al. "Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks.” CVPR (2018).

CONCEP TS ARE NOT ALWAYS LOCALISED

The same units appear to represent different concepts

This is sometimes called Polysemanticity (Olah et al., 2020)

https://arxiv.org/abs/1801.03454


52

Concepts may not be always localised to specific neurons/maps 

but they may be distributed across the DNN’s latent space

[1] Fong et al. "Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks.” CVPR (2018).

The same units appear to represent different concepts

This is sometimes called Polysemanticity (Olah et al., 2020)

Could we then try and capture directions in the latent 
space that are associated with known concepts?

CONCEP TS ARE NOT ALWAYS LOCALISED

https://arxiv.org/abs/1801.03454


This is the idea behind T-CAV (Testing with concept activation vectors)

TESTING WITH CONCEPT ACTIVATION VECTORS

53[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

How sensitive  is the prediction of zebra is to the presence of the concept of “stripes”?

https://arxiv.org/abs/1711.11279


PARTITIONING THE NET WORK

54

Step 1: Choose an intermediate layer 𝑓𝑙: 𝑅𝑛 → 𝑅𝑚 with 𝑚 neurons

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

https://arxiv.org/abs/1711.11279


LEARNING CONCEP T ACTIVATION VECTORS

Step 2: Learn the Concept Activations Vectors (CAVs)

• Train a linear classifier to distinguish between the activations of concept’s 

examples and random ones 

• The CAV is the vector orthogonal to the classification boundary 𝑣𝐶
𝑙

55

set of examples for a concept 
and random examples

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

https://arxiv.org/abs/1711.11279


Step 3: Given a sample 𝒙, construct a local importance score 𝑆𝐶,𝑘,𝑙 𝑥  

indicating how important concept 𝐶 is for the 𝑘-th output label.

56

TESTING WITH CAVS (T-CAV)

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

We want 𝑆𝐶,𝑘,𝑙 𝑥  to capture “how much would the prediction of class 𝑘 

change if I “increase” concept C in sample 𝒙?”

𝑆𝐶,𝑘,𝑙 𝑥 = lim
𝜖→0

ℎ𝑙,𝑘 𝑓𝑙 𝒙 + 𝜖𝒗𝐶
𝑙 − ℎ𝑙,𝑘 𝑓𝑙 𝒙

𝜖
(Read as: how much would the prediction of label 𝑘 change if I take a small step in the direction of concept 𝐶?)

https://arxiv.org/abs/1711.11279


Step 3: Given a sample 𝒙, construct a local importance score 𝑆𝐶,𝑘,𝑙 𝑥  

indicating how important concept 𝐶 is for the 𝑘-th output label.

57

TESTING WITH CAVS (T-CAV)

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

We want 𝑆𝐶,𝑘,𝑙 𝑥  to capture “how much would the prediction of class 𝑘 

change if I “increase” concept C in sample 𝒙?”

This is the same as a directional derivative!

https://arxiv.org/abs/1711.11279


Step 3: Given a sample 𝒙, construct a local importance score 𝑆𝐶,𝑘,𝑙 𝑥  

indicating how important concept 𝐶 is for the 𝑘-th output label.

58

CAV for concept 
𝐶 (e.g., stripes)

Intermediate representation of
          at layer 𝑙 

𝑆𝐶,𝑘,𝑙 𝑥 = ∇ℎ𝑙,𝑘 𝑓𝑙 𝑥  . 𝑣𝐶
𝑙  = ∇ℎ𝑙,𝑘 𝑓𝑙  . 𝑣𝐶

𝑙  
Output 

function

The rate of change of output function 
as we move in the direction of a 
concept from data point 

TESTING WITH CAVS (T-CAV)

Intuition: “high directional derivative” = “large positive change in class label if we ’increase’ 𝐶 in input 𝑥”

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

https://arxiv.org/abs/1711.11279


Step 4: Get a global importance score (T-CAV) for each concept by combining 

the local sensitivities of samples in an evaluation set:

59

TCAV𝑄𝐶,𝑘,𝑙
=

|{𝑥 ∈ 𝑋𝑘:  𝑆𝐶,𝑘,𝑙 𝑥 > 0}|

|𝑋𝑘|

𝑋𝑘 : inputs 

with label 𝑘

The T-CAV score is the fraction of samples with label 𝒌 that are positively influenced by concept 𝐶

TESTING WITH CAVS (T-CAV)

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

https://arxiv.org/abs/1711.11279


You can use T-CAV scores to explore/identify model biases

60

EXAMPLE: DETECTING BIASES WITH T -CAV

The concept of “female” was found to be significant for predicting the class “Apron”

The concept of “Siberian husky” was found to be significant for predicting the class “Dogsled”

[1] Kim et al. "Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav)." ICML (2018).

https://arxiv.org/abs/1711.11279


T-CAV LIMITATIONS

61[1] Crabbé et al. "Concept activation regions: A generalized framework for concept-based explanations." NeurIPS (2022).

VS

Assuming concepts are linearly separable is a strong and unrealistic 

assumption

Classes can be linearly separable While concepts may not be separable

https://arxiv.org/abs/2209.11222


CONCEP T ACTIVATION REGIONS

62

This can be solved by using kernel methods to perform our concept probing on 

higher-dimensional space where concepts may be separable

[1] Crabbé et al. "Concept activation regions: A generalized framework for concept-based explanations." NeurIPS (2022).

https://arxiv.org/abs/2209.11222


THE POST-HOC STORY SO FAR

63



Post-hoc methods have a clear set of important limitations:

1. They may fail to properly explain a model → potentially doubling 

the source of error! 

THE POST-HOC STORY SO FAR

64



Post-hoc methods have a clear set of important limitations:

1. They may fail to properly explain a model → potentially doubling 

the source of error! 

THE POST-HOC STORY SO FAR

65

In fact, these methods often disagree with each other [1]

[1] Krishna et al. "The disagreement problem in explainable machine learning: A practitioner's perspective." TMLR (2022).

https://arxiv.org/abs/2202.01602


Post-hoc methods have a clear set of important limitations:

2. Explanations are prone to confirmation bias [1]

THE POST-HOC STORY SO FAR

66[1] Bertrand et al. "How cognitive biases affect XAI-assisted decision-making: A systematic review."  AIES (2022)

Image taken from “Confirmation Bias and the new Malaysia” by Datuk Steven Wong (New Straits Times)

https://dl.acm.org/doi/10.1145/3514094.3534164


Rather than explaining an already trained model, let the 

model explain itself!

GOING IN-MODEL

67

Prediction

Explanation



GOING IN-MODEL

68



ALIGNING MACHINES AND HUMANS

M = Machine 
Representational Space

𝐻 − 𝑀𝑀 − 𝐻

𝑀 ∩ 𝐻 = Human-like Concepts 
[1] Inspired by Schut et al. "Bridging the human-ai knowledge gap: Concept discovery and transfer in alphazero." arXiv (2023).

H = Human 
Representational Space

69

https://arxiv.org/abs/2310.16410


ALIGNING MACHINES AND HUMANS

M = Machine 
Representational Space

𝐻 − 𝑀

H = Human 
Representational Space

𝑀 − 𝐻 Concepts

𝑀 ∩ 𝐻

70
[1] Inspired by Schut et al. "Bridging the human-ai knowledge gap: Concept discovery and transfer in alphazero." arXiv (2023).

https://arxiv.org/abs/2310.16410


CONCEP T-BASED REASONING

Concept-based reasoning can be framed as a Concept Bottleneck Model [1]

𝑋 𝑌𝐶

𝑃 𝐶, 𝑌 | 𝑋 = 𝑃 𝐶 | 𝑋 𝑃 𝑌 | 𝐶

𝑋 = Sample Features 𝐶 = Human-interpretable “Concepts” 𝑌 = Target Task Labels

71[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


CONCEP T BOT TLENECK MODELS (CBMS)

CBMs decompose a DNN into two functions:

1. A concept encoder 𝑔 𝒙 = ො𝒄 predicting concepts from the input features

2. A label predictor 𝑓 ො𝒄 = ො𝑦 predicting task labels from the predicted concepts

BottleneckInput

Cysts Prediction

Osteoarthritis

Grade 2

Sclerosis

Bone Spurs

Narrow joint space

𝑃 𝐶 | 𝑋 𝑃 𝑌 | 𝐶

72[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


TRAINING A CBM
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Given a concept-annotated dataset 𝒟 = 𝒙 𝑖 , 𝒄 𝑖 , 𝑦 𝑖
𝑖=1

𝑁
 we can 

train a CBM in three different forms:

(1) Independently

𝔼 𝒙, 𝒄 ∼𝒟 BCE 𝑔 𝒙 , 𝒄

𝔼 𝒄, 𝑦 ∼𝒟 CE 𝑓 𝒄 , 𝑦

(2) Sequentially

𝔼 𝒙, 𝒄 ∼𝒟 BCE 𝑔 𝒙 , 𝒄

𝔼 𝒙, 𝑦 ∼𝒟 CE 𝑓 𝑔 𝑥 , 𝑦

Freeze 𝑔

(a)

(b)

(3) Jointly

𝔼 𝒙, 𝒄, 𝑦 ∼𝒟 CE 𝑓 𝑔 𝒙 , 𝑦 +  𝜆 ⋅ BCE 𝑔 𝒙 , 𝒄

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


CONCEP T-LEVEL INTERVENTIONS

Concept-based reasoning enables powerful human-AI interactions
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CONCEP T-LEVEL INTERVENTIONS

Concept-based reasoning enables powerful human-AI interactions

75



CONCEP T INTERVENTIONS
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As we intervene on more concepts, CBM’s test error goes down!

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


ARE CBMS ALL WE NEED?

77

CBMs are great in a lot of ways:

1. They are simple to understand and provide high-level explanations.

2. They enable test-time interventions that improve their accuracy.

3. They are very stable, expressive and easy to train.

So, are we done?

Short Answer: No Long Answer:



INTRODUCING CBM’S FRIENDS
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SPEED-DATING WITH CBM’S FRIENDS
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CONCEP T EMBEDDING MODELS

80

Limitation Being Addressed

Provided concepts need to be “complete” or else we observe a trade-off!

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

https://arxiv.org/abs/2209.09056


CONCEP T EMBEDDING MODELS

81

Provided concepts need to be “complete” or else we observe a trade-off!

Why can’t we just add a bypass from the input to the output?

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Limitation Being Addressed

https://arxiv.org/abs/2209.09056


CONCEP T EMBEDDING MODELS

82

A “Hybrid” CBM

Provided concepts need to be “complete” or else we observe a trade-off!

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Why can’t we just add a bypass from the input to the output?

Limitation Being Addressed

https://arxiv.org/abs/2209.09056


CONCEP T EMBEDDING MODELS
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Provided concepts need to be “complete” or else we observe a trade-off!

A “Hybrid” CBM

Interventions do not necessarily work with Hybrid CBMs!

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Limitation Being Addressed

https://arxiv.org/abs/2209.09056


CONCEP T EMBEDDING MODELS
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Similar performance regardless of the 
number of concepts used during training

“Completeness Agnostic”

Better performance as we 
intervene in more concepts

“Intervenable”

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

What we want

https://arxiv.org/abs/2209.09056


We can achieve completeness agnosticism by extending the concept representations to 
higher-dimensions

CONCEP T EMBEDDING MODELS

85

Concept
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Prediction

Osteoarthritis
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Narrow joint space

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


We can achieve completeness agnosticism by extending the concept representations to 
higher-dimensions

CONCEP T EMBEDDING MODELS

86[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


We can achieve intervenability by decomposing ො𝒄𝒊 as the mixture between two 
representations {ො𝒄𝒊

+, ො𝒄𝒊
−}:

CONCEP T EMBEDDING MODELS
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“Positive” concept embeddings

“Negative” concept embeddings

ො𝒄𝒊  ≔ Ƹ𝑝𝑖  ො𝒄𝒊
+ + 1 − Ƹ𝑝𝑖  ො𝒄𝒊

−

Concept Embedding Space ℝ𝑚

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


We can achieve intervenability by decomposing ො𝒄𝒊 as the mixture between two 
representations {ො𝒄𝒊

+, ො𝒄𝒊
−}:

CONCEP T EMBEDDING MODELS
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“Positive” concept embeddings

“Negative” concept embeddings

ො𝒄𝒊  ≔ Ƹ𝑝𝑖  ො𝒄𝒊
+ + 1 − Ƹ𝑝𝑖  ො𝒄𝒊

−

Concept Embedding Space ℝ𝑚

Determining a concept’s activation given ො𝒄𝒊 then comes down to determining whether 
ො𝒄𝒊 comes from 𝑃 ො𝒄𝒊

+| 𝑥  or 𝑃 ො𝒄𝒊
−| 𝑥

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


You can then intervene on a concept by fixing its representation to the embedding 
corresponding to the ground-truth concept label:

CONCEP T EMBEDDING MODELS

89

ො𝒄𝒊 ≔ ൝
ො𝒄𝒊

+ if 𝑐𝑖 = 1

ො𝒄𝒊
−, otherwise

We can randomly do these interventions at training time to learn more useful representations!

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


Embedding Generators BottleneckInput
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CONCEP T EMBEDDING MODELS
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𝑃 𝑐𝑖 = 1 | 𝒙 = 𝑠 ො𝒄𝑖
+, ො𝒄𝑖

− = 𝜎 𝑆 ො𝒄𝑖
+, ො𝒄𝑖

− 𝑇 

Learn two functions (𝜙𝑖
+, 𝜙𝑖

−) mapping 𝒙 to a positive ො𝒄𝑖
+ and a negative embedding ො𝒄𝑖

−

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

Proposed Solution

https://arxiv.org/abs/2209.09056


CONCEP T EMBEDDING MODELS

91

This gives you models that are completeness agnostic and intervenable*

*This is particularly true when, during training, you randomly intervene** on a concept with probability 𝑝𝑖𝑛𝑡.

** These sorts of training-time interventions are useful here only because by using embeddings, we can backpropagate 
gradients to the concept encoder even when a concept is intervened on (a CBM wouldn’t).

Proposed Solution



SPEED-DATING WITH CBM’S FRIENDS
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CONCEP T WHITENING (CW)

93

Training a CBM has impractical architectural constraints and requires all training 
samples to be concept annotated!

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

Limitation Being Addressed

This limits our ability to exploit powerful pre-trained models

https://www.nature.com/articles/s42256-020-00265-z


INTERPRETABLE-BY-DESIGN NEURAL LAYER

94

Design an interpretable-by-design layer which we can use to replace an equivalent 
component in a pre-trained model and quickly fine-tune it to make it interpretable

We will target the commonly used Batch Normalization (BN) layer

Proposed Solution

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

https://www.nature.com/articles/s42256-020-00265-z


WHITENING FOR DISENTANGLING CONCEPTS

95
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Activation Space Standardized Space

Normalization can somewhat help disentangle concepts in a DNN’s latent space

Intuition

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

https://www.nature.com/articles/s42256-020-00265-z


WHITENING FOR DISENTANGLING CONCEPTS
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Solution

Activation Space Standardized Space Whitened Space

Whitening a latent space can allow us to properly separate concepts in the latent space

Intuition

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

https://www.nature.com/articles/s42256-020-00265-z


ROTATING TO ENSURE CONCEP T ALIGNMENT

97

More importantly, once an input is whitened, we can apply a rotation to align a specific 
concept to a specific axis! 

Normalize Whiten Rotate

Approach

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

https://www.nature.com/articles/s42256-020-00265-z


CONCEP T WHITENING (CW)

Given a fine-tuning training set 𝒟𝑡 = 𝒙 𝑖 , 𝑦 𝑖
𝑖
 and 𝒌 concept sets 𝒟𝑐 =

𝑋𝐶1
, 𝑋𝐶2

, ⋯ , 𝑋𝐶𝑘
, we will learn a rotation matrix 𝑄 ∈ ℝ𝑚×𝑚 by iterating between:

1. Task training step → make sure the downstream task prediction is accurate

2. Concept alignment step → make sure each concept is aligned to a latent activation

Approach

98



TRAINING CW: TASK TRAINING STEP
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Main Dataset

Φ𝜃 Ԧ𝑥Ԧ𝑥

Ԧ𝑧

𝜓 𝑊,𝜇 Ԧ𝑧

Whitening

g𝜔 Ԧ𝑧′

Ԧො𝑦

𝜓 𝑊,𝜇 Ԧ𝑧 = 𝑊 Ԧ𝑧  − Ԧ𝜇  

×

𝑄

ZCA-Whitening matrix 𝑾 = 𝚺−
𝟏

𝟐 via IterNorm

ℒ Ԧො𝑦, Ԧ𝑦

Ԧ𝑦

Ԧ𝑧′

“Partial” Concept Bottleneck

(Frozen)

Rotation Matrix



TRAINING CW: CONCEP T ALIGNMENT STEP

Auxiliary Datasets

Φ𝜃 Ԧ𝑥

𝑋𝐶1

Ԧ𝑧

𝜓 𝑊,𝜇 Ԧ𝑧

Whitening

×
𝑋𝐶2

𝑋𝐶3
𝑋𝐶4

Maximize effect of aligning the j-th activation with samples from the j-th concept

𝑄

(Learnable!)

Rotation Matrix
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CW supports the hypothesis that DNNs learn more complex concepts in later layers:

101

FOUND PROTOTYPES

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020).

https://www.nature.com/articles/s42256-020-00265-z


SPEED-DATING WITH CBM’S FRIENDS
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CBMs

Post-hoc 
CBMs



CW is great but is has some key limitations:

1. It requires a batch norm layer in the pretrained model (read: architecture-specific)

2. It requires fine-tuning of all the of the model’s weights (read: could be expensive)

POST-HOC CBMS

103[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Limitation Being Addressed

https://arxiv.org/abs/2205.15480


Given a bank of concept activation vectors in a pre-trained model, we learn an 
interpretable mapping projected concept scores and a downstream task of interest

POST-HOC CBMS

104

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

A trained DNN Concept Activation Vector Bank

+ =

Post-hoc CBMs!

https://arxiv.org/abs/2205.15480


105

Make the final prediction with 
an interpretable predictor

POST-HOC CBMS

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Goal: learn an interpretable model mapping concept similarity scores to task labels

Step 1: learn CAVs from the frozen latent space of the pre-trained DNN

https://arxiv.org/abs/2205.15480
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POST-HOC CBMS

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Goal: learn an interpretable model mapping concept similarity scores to task labels

Step 2: project all training samples to the concept activation space using the cavs

https://arxiv.org/abs/2205.15480
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POST-HOC CBMS

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Goal: learn an interpretable model mapping concept similarity scores to task labels

Step 3: learn an interpretable predictor from the concept scores to the task labels

https://arxiv.org/abs/2205.15480


108

If the concepts are incomplete, the performance will drop significantly!

POST-HOC CBMS

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Goal: learn an interpretable model mapping concept similarity scores to task labels

Step 3: learn an interpretable predictor from the concept scores to the task labels

https://arxiv.org/abs/2205.15480
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POST-HOC CBMS

Proposed Solution

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Goal: learn an interpretable model mapping concept similarity scores to task labels

Step 4 (optional): fit a residual model if the concepts are incomplete

https://arxiv.org/abs/2205.15480
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POST-HOC CBMS WITHOUT CONCEP T SETS

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

Post-hoc CBMs can be learnt without concept sets if we have access to 
language-based concepts together with a multimodal model

https://arxiv.org/abs/2205.15480


SPEED-DATING WITH CBM’S FRIENDS
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CBMs

Probabilistic 
CBMs



CBMs must predict concepts for all samples even they are ambiguous

The cross-entropy loss does not encourage the concept predictor to be uncertain

PROBABILISTIC CBMS

112[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Limitation being addressed

https://arxiv.org/abs/2306.01574


Use probabilistic embeddings that enable uncertainty estimation of each concept!

Learn a distribution over concept embeddings and use its variance to estimate uncertainty

113

PROBABILISTIC CBMS

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Proposed Solution

https://arxiv.org/abs/2306.01574


Each Probabilistic Embedding Module (PEM) generates a mean 𝜇𝑐𝑖
 and a variance 𝜎𝑐𝑖

 for 

the concept embedding

114

PROBABILISTIC CBMS

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Proposed Solution

https://arxiv.org/abs/2306.01574
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“Anchor” embedding representing the concept when it is “on”

“Anchor” embedding representing the concept when it is “off”

PROBABILISTIC CBMS

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Proposed Solution

We learn a set of fixed anchor embeddings representing the concept when it is on vs off

https://arxiv.org/abs/2306.01574
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𝑝 𝑐 = 1 | 𝑧𝑐 = 𝜎 𝑎 𝑧𝑐 − 𝑧𝑐
−

2
− 𝑧𝑐 − 𝑧𝑐

+
2

PROBABILISTIC CBMS

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Proposed Solution

The distance from the sampled embedding to each anchor can be used to predict a concept

https://arxiv.org/abs/2306.01574
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As embeddings are modelled as Gaussians, this is the determinant of the covariance!

PROBABILISTIC CBMS

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

Proposed Solution

A concept’s distribution’s volume can be used to quantify its uncertainty

https://arxiv.org/abs/2306.01574


END OF THE SPEED DATES!
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DO CBMS PROPERLY LEARN TO EXPLAIN?
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DO CBMS PROPERLY LEARN TO EXPLAIN?
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[1] Margeloiu et al. "Do concept bottleneck models learn as intended?." ICLR Workshop on Responsible AI (2021).
[2] Mahinpei et al. "Promises and pitfalls of black-box concept learning models." ICML Workshop on Theoretic Foundation, Criticism, and Application of XAI  (2021).  
[3] Raman et al. "Do Concept Bottleneck Models Respect Localities?." NeurIPS Workshop on XAI in Action (2024).

Several recent works suggest CBMs may have issues with unwanted leakage

Saliency maps seem to suggest 
concepts are not properly attended

(Margeloiu et al.) [1]

Attending spurious features

CBMs may have incentives to encode the 
entire data representation in the 

concepts’ soft predictions
(Mahinpei et al.) [2]

Leaking unwanted information

CBMs may fail to capture a concept’s locality 
(e.g., physical location) even if it is only found 

on a fixed feature subset
(Raman et al.) [3]

Failing to capture concept locality

https://arxiv.org/abs/2105.04289
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2401.01259


DO CBMS PROPERLY LEARN TO EXPLAIN?
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[1] Sinha et al. "Understanding and enhancing robustness of concept-based models." AAAI (2023). 
[2] Heidemann et al. "Concept correlation and its effects on concept-based models." WACV (2023).
[3] Espinosa Zarlenga, Barbiero, Shams et al. "Towards robust metrics for concept representation evaluation." AAAI (2023). 
[4] Bortolotti, Marconato, et al. "A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts." NeurIPS (2024).
[5] Marconato et al. "Interpretability is in the mind of the beholder: A causal framework for human-interpretable representation learning." Entropy (2023).

Many more works have dived deeper into these issues!

CBMs concepts predictions can be changed 
without affecting the final prediction

(Sinha et al.) [1]

Adversarial attacks and defences

Simple changes to the loss, like loss weighting, can 
help avoid CBMs exploiting unwanted correlations

(Heidenmann et al.) [2]

Studying concept correlations

Several works proposed ways to formalise or 
measure concept leakage [3, 4, 5]

Formalisms and metrics for leakage

Metrics for 
unwanted 
leakage [3]

Benchmark 
suite for 

reasoning 
robustness [4]

Formalisation 
of leakage [5]

https://arxiv.org/abs/2211.16080
https://openaccess.thecvf.com/content/WACV2023/html/Heidemann_Concept_Correlation_and_Its_Effects_on_Concept-Based_Models_WACV_2023_paper.html
https://arxiv.org/abs/2301.10367
https://arxiv.org/abs/2406.10368
https://www.mdpi.com/1099-4300/25/12/1574


STEPS TOWARDS ADDRESSING LEAKAGE
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[1] Marconato et al. "Glancenets: Interpretable, leak-proof concept-based models." NeurIPS (2022). 
[2] Havasi et al. "Addressing leakage in concept bottleneck models." NeurIPS (2022).

Autoregressive CBMs

[Main Idea] Reduce leakage between concepts by modeling 
cross-concept relationships using an autoregressive architecture

GlanceNets

[Main Idea] Frame leakage in terms of disentanglement learning 
and use an open-set recognition to detect it at inference

This have brought forth attempts to address or mitigate the effects of leakage:

https://arxiv.org/abs/2205.15612
https://proceedings.neurips.cc/paper_files/paper/2022/file/944ecf65a46feb578a43abfd5cddd960-Paper-Conference.pdf


RECENT DIRECTIONS
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CBMs have become very popular in XAI with several active areas of research:



RECENT DIRECTIONS

124[1] Xu et al. "Energy-based concept bottleneck models: unifying prediction, concept intervention, and conditional interpretations." ICLR (2024).

Energy-based Concept Bottleneck Models (Xu et al., 2024)

CBMs have become very popular in XAI with several active areas of research:

1. Capturing more complex relationships between concepts and tasks labels

https://arxiv.org/abs/2401.14142


RECENT DIRECTIONS

125[1] Yamaguchi et al. "Explanation Bottleneck Models." AAAI (2025).

CBMs have become very popular in XAI with several active areas of research:

1. Capturing more complex relationships between concepts and tasks labels

2. Producing entirely language-based bottlenecks (accepted to this AAAI!)

Explanation Bottleneck Models (Yamaguchi et al.)

https://arxiv.org/abs/2409.17663


RECENT DIRECTIONS
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[1] Xuanyuan al. "Global concept-based interpretability for graph neural networks via neuron analysis." AAAI (2023).
[2] Espinosa Zarlenga et al. "Tabcbm: Concept-based interpretable neural networks for tabular data." TMLR (2024).
[3] Ye et al. "Concept-based interpretable reinforcement learning with limited to no human labels." ICML (2024).
[4] Kazhdan et al. "MEME: generating RNN model explanations via model extraction." arXiv (2020).

CBMs have become very popular in XAI with several active areas of research:

1. Capturing more complex relationships between concepts and tasks labels

2. Producing entirely language-based bottlenecks (accepted to this AAAI!)

3. Exploring concepts in modalities and tasks other than supervised visual tasks

Graph Data
(e.g., Xuanyuan et al.)

RL Tasks
(e.g., Ye et al.)

Tabular Data
(e.g., Espinosa Zarlenga et al.)

Time Series Data
(e.g., Kazhdan et al.)

https://arxiv.org/abs/2208.10609
https://openreview.net/forum?id=TIsrnWpjQ0
https://arxiv.org/abs/2407.15786
https://arxiv.org/abs/2012.06954


TUTORIAL OUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4. Q&A + Break

5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions

8. Q&A
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RECALL CONCEP T INTERVENTIONS
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Concept interventions enable experts to “inject” knowledge during inference



SOME CONCEPTS ARE BET TER THAN OTHERS

129[1] mage taken from Leah Lin , “How to Identify a Crow and a Raven: Key Features Explained” Birdfy (2024).

When intervening on a CBM, it is important to realise that some concepts are:

1. Less informative than others (e.g., redundant w.r.t. other concepts)

2. Less certain than others (e.g., due to occlusions or inherent difficulties)

Concept “Belly Color” is partially occluded

To identify a Raven from a Crow, “tail shape” 
is more informative than “wing color”

https://www.birdfy.com/blogs/blogs/how-to-identify-a-crow-and-a-raven-key-features-explained


SOME CONCEPTS ARE BET TER THAN OTHERS
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When intervening on a CBM, it is important to realise that some concepts are:

1. Less informative than others (e.g., redundant w.r.t. other concepts)

2. Less certain than others (e.g., due to occlusions or inherent difficulties)

Hence, an intervention’s effectiveness depends on the intervened concept!



SELECTING MEANINGFUL CONCEP TS

131[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

Intervention policies select which concept to intervene on next by assigning 

each concept 𝑐𝑖  a score 𝑠𝑖 and selecting concepts in decreasing score order:

Given 𝒙 and concept predictions ො𝒄, what concept should I 
intervene on next to minimize my model’s task uncertainty?

https://proceedings.mlr.press/v202/shin23a.html


SELECTING MEANINGFUL CONCEP TS

132[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

Uncertainty of concept prediction (UCP)

Select the concept 𝑐𝑖 with the highest predicted 
entropy si = ℋ Ƹ𝑐𝑖

Intervention policies select which concept to intervene on next by assigning 

each concept 𝑐𝑖  a score 𝑠𝑖 and selecting concepts in decreasing score order:

https://proceedings.mlr.press/v202/shin23a.html


SELECTING MEANINGFUL CONCEP TS

133[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

Contribution of concept on target prediction (CCTP)

Select the concept 𝑐𝑖 with the highest contribution on 

target prediction 𝑠𝑖 = σ𝑗=1
𝐿 Ƹ𝑐𝑖

𝜕𝑓𝑗 𝑥

𝜕 Ƹ𝑐𝑖
.

Intervention policies select which concept to intervene on next by assigning 

each concept 𝑐𝑖  a score 𝑠𝑖 and selecting concepts in decreasing score order:

https://proceedings.mlr.press/v202/shin23a.html


SELECTING MEANINGFUL CONCEP TS

134[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

Expected change in target prediction (ECTP)
Select the concept 𝑐𝑖 with the highest expected 
change in the target predictive distribution 
𝑠𝑖 = 1 − Ƹ𝑐𝑖 𝐷𝐾𝐿 ො𝑦 Ƹ𝑐𝑖=0|| ො𝑦 + Ƹ𝑐𝑖𝐷𝐾𝐿 ො𝑦 Ƹ𝑐𝑖=1|| ො𝑦

Intervention policies select which concept to intervene on next by assigning 

each concept 𝑐𝑖  a score 𝑠𝑖 and selecting concepts in decreasing score order:

https://proceedings.mlr.press/v202/shin23a.html


SELECTING MEANINGFUL CONCEP TS

135[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

Uncertainty of concept prediction (UCP)

Select the concept 𝑐𝑖 with the highest predicted 
entropy si = ℋ Ƹ𝑐𝑖

Contribution of concept on target prediction (CCTP)

Select the concept 𝑐𝑖 with the highest contribution on 

target prediction 𝑠𝑖 = σ𝑗=1
𝐿 Ƹ𝑐𝑖

𝜕𝑓𝑗 𝑥

𝜕 Ƹ𝑐𝑖
.

Intervention policies select which concept to intervene on next by assigning 

each concept 𝑐𝑖  a score 𝑠𝑖 and selecting concepts in decreasing score order:

One can think of these policies as proxies for a concept’s information content and certainty

Expected change in target prediction (ECTP)
Select the concept 𝑐𝑖 with the highest expected 
change in the target predictive distribution 
𝑠𝑖 = 1 − Ƹ𝑐𝑖 𝐷𝐾𝐿 ො𝑦 Ƹ𝑐𝑖=0|| ො𝑦 + Ƹ𝑐𝑖𝐷𝐾𝐿 ො𝑦 Ƹ𝑐𝑖=1|| ො𝑦

https://proceedings.mlr.press/v202/shin23a.html


INTERVENTION POLICIES RESULTS

136[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

This leads to significantly different intervention curves:

Best performing non-oracle policy is Expected change in target prediction (ECTP) but even the simple 
Uncertainty of concept prediction (UCP) is significantly better than the random policy (RAND)

(Intuition: one should select the concept leading to the highest expected change in the task’s distribution)

https://proceedings.mlr.press/v202/shin23a.html


INTERVENTION POLICIES RESULTS

137[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

This leads to significantly different intervention curves:

We still observe a significant gap between the best policy and an optimal greedy policy (LCP)

https://proceedings.mlr.press/v202/shin23a.html


COMBINING POLICIES

138

It may be possible to shorten this gap by learning a weighting between the 

concept uncertainty and the expected change in current prediction policies

[1] Chauhan et al. "Interactive concept bottleneck models." AAAI (2023).

𝑠𝑖 = 𝛼ℋ Ƹ𝑐𝑖 + 𝛽 𝐸𝑣∼𝑝 𝑐𝑖 | 𝒙 ො𝑦 Ƹ𝑐𝑖=𝑣  − ො𝑦 + 𝛾𝑞𝑖

Cooperative Prediction Intervention Policy (CooP)

https://arxiv.org/abs/2212.07430


COMBINING POLICIES
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It may be possible to shorten this gap by learning a weighting between the 

concept uncertainty and the expected change in current prediction policies

[1] Chauhan et al. "Interactive concept bottleneck models." AAAI (2023).

𝑠𝑖 = 𝛼ℋ Ƹ𝑐𝑖 + 𝛽 𝐸𝑣∼𝑝 𝑐𝑖 | 𝒙 ො𝑦 Ƹ𝑐𝑖=𝑣  − ො𝑦 + 𝛾𝑞𝑖

Cooperative Prediction Intervention Policy (CooP)

Uncertainty of concept prediction

Expected change to the current predicted label if we were to intervene on c_i based on c_i’s current prediction

Cost of the intervention

https://arxiv.org/abs/2212.07430


COMBINING POLICIES
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It may be possible to shorten this gap by selecting concepts based on both 

the concept uncertainty and the expected change in current prediction

[1] Chauhan et al. "Interactive concept bottleneck models." AAAI (2023).

𝑠𝑖 = 𝛼ℋ Ƹ𝑐𝑖 + 𝛽 𝐸𝑣∼𝑝 𝑐𝑖 | 𝒙 ො𝑦 Ƹ𝑐𝑖=𝑣  − ො𝑦 + 𝛾𝑞𝑖

Cooperative Prediction Intervention Policy (CooP)

We can find the hyperparameters 𝛼, 𝛽, and 𝛾 using a concept-annotated validation set

Can we do any better than this? Can we avoid the need for calculating 
computationally expensive scores all concepts?

https://arxiv.org/abs/2212.07430


INSIGHT #1: TRAINING-TIME INCENTIVES

During training, concept-based models are not even aware they may be intervened on!

Predict task 
labels from a set 

of entirely 
predicted 
concepts

Predict task 
labels from a set 

of concepts 
where some are 

ground-truth 
labels and others 

are predicted

Train-time Test-time

≠

There is a disconnect between how CBMs are trained and how they 
are used at test-time when they are intervened on

During testing, concept interventions may lead to out-of-distribution bottlenecks for a CBM!

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023) 141

https://arxiv.org/abs/2309.16928


INSIGHT #2: USEFUL TRAINING FEEDBACK

This is feedback we have at training time and can use to learn an intervention policy!

(Translation: Attempt every intervention and select that one maximises the ground truth label’s confidence)

If we know all task and concept labels, we can compute the optimal 
greedy concept intervention:

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023) 142

https://arxiv.org/abs/2309.16928


INSIGHT #3: INTERVENTIONS CAN BE DIFFERENTIABLE

When modelling concepts as being a mixture of two learnable 
embeddings 𝒄𝑖

+ , 𝒄𝑖
− as in CEMs, interventions are differentiable:

ො𝒄𝒊  ≔ ෝ𝑝𝑖 ො𝒄𝒊
+ + 1 − ෝ𝑝𝑖  ො𝒄𝒊

−

Original Embedding Construction

Intervened Embedding Construction

ො𝒄𝒊  ≔ 𝜇𝑖𝑐𝑖 + 1 − 𝜇𝑖 ෝ𝑝𝑖  ො𝒄𝒊
+ + 1 − 𝜇𝑖𝑐𝑖 + 1 − 𝜇𝑖 Ƹ𝑝𝑖  ො𝒄𝒊

−

Whether we intervene on the 𝑖-th concept (can be relaxed to be in [0,1])

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023) 143

https://arxiv.org/abs/2309.16928


INSIGHT #3: INTERVENTIONS CAN BE DIFFERENTIABLE

When modelling concepts as being a mixture of two learnable 
embeddings 𝒄𝑖

+ , 𝒄𝑖
− as in CEMs, interventions are differentiable:

ො𝒄𝒊  ≔ ෝ𝑝𝑖 ො𝒄𝒊
+ + 1 − ෝ𝑝𝑖  ො𝒄𝒊

−

Original Embedding Construction

Intervened Embedding Construction

ො𝒄𝒊  ≔ 𝜇𝑖𝑐𝑖 + 1 − 𝜇𝑖 ෝ𝑝𝑖  ො𝒄𝒊
+ + 1 − 𝜇𝑖𝑐𝑖 + 1 − 𝜇𝑖 Ƹ𝑝𝑖  ො𝒄𝒊

−

Whether we intervene on the 𝑖-th concept (can be relaxed to be in [0,1])

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023)

This means an intervention policy deciding 𝜇𝑖 can be learnt via gradient descent!

144

https://arxiv.org/abs/2309.16928


Intervention-Aware Concept Embedding Models (IntCEMs) 
incorporate these insights into an end-to-end architecture that:

1. Introduces an intervention-aware training loss that encourages 
receptiveness to concept interventions at test-time

2. Learns an efficient intervention policy in an end-to-end fashion.

INTERVENTION-AWARE MODELS

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023) 145

https://arxiv.org/abs/2309.16928


This can be done using an end-to-end neural architecture:

HOW TO TRAIN YOUR INTCEM?

[1] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023) 146

https://arxiv.org/abs/2309.16928


HOW TO TRAIN YOUR INTCEM?

(1) Construct a positive and negative embedding for each training concept

This can be done using an end-to-end neural architecture:

147



HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

(2) Randomly select a subset of concepts which we will initially intervene on and a number of interventions 𝑇 we will 
perform in this training step

148



HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

(3) Recursively sample a trajectory of T interventions from this set using a learnable intervention policy. We train this 
policy to align to the “oracle” optimal policy.

149



HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

(4) Penalise the model more heavily for mispredicting the task label at the end of the intervention trajectory vs 

mispredicting the task label at the start of the trajectory

𝔼 𝒙,𝒄,𝑦 ∼𝒟

ℒ𝑡𝑎𝑠𝑘 𝑦,𝑓 Ƹ𝑐(0) +𝛾𝑇ℒ𝑡𝑎𝑠𝑘 𝑦,𝑓 Ƹ𝑐(𝑇)

1+𝛾𝑇  
150



WHAT DOES ALL OF THIS GIVE YOU?

151



(1) A model that is much better at receiving test-time feedback 
even if concepts are intervened in a random order

WHAT DOES ALL OF THIS GIVE YOU?

IntCEM IntCEM

Up to 9% in absolute improvement when 25% of concepts are randomly selected to be intervened on!

152



(2) An efficient intervention policy that selects useful concepts to 
intervene on next

WHAT DOES ALL OF THIS GIVE YOU?

IntCEM’s Policy! IntCEM’s Policy!

153



CRITICAL LIMITATIONS OF INTERVENTIONS

154

When intervening, we assume that concept interventions are:

1. Transient: after an intervention is made, it is forgotten
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If an intervention is made on a sample 𝒙

Bone Spurs

Cysts

Narrow Joint Space

...

Label PredictorConcept Encoder

OA Grade 2 (mild)
Sclerosis

Human Expert

The same mistake will be made if 𝒙 is seen again

Some time later…



CRITICAL LIMITATIONS OF INTERVENTIONS
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When intervening, we assume that concept interventions are:

1. Transient: after an intervention is made, it is forgotten

2. Independent: intervening on concept 𝑐𝑖 will not affect other concepts’ values



RELAXING KEY ASSUMP TIONS

156

These constraints can be relaxed via clever modelling:

[1] Steinmann et al. "Learning to Intervene on Concept Bottlenecks." ICML (2024).
[2] Vandenhirtz, Laguna et al. "Stochastic Concept Bottleneck Models." NeurIPS (2024).

Concept Bottleneck Memory Models

Addresses: Transient nature of a concept intervention

Approach: Introduce a learnable memory module that keeps 
previously seen interventions and re-applies them in the future,

Stochastic Concept Bottleneck Models

Addresses: the assumption that concepts are independent

Approach: Model the predicted concept logits as a normal distribution 
with a (learnable) non-diagonal covariance. 

𝜎−1 ො𝒄

∼ 𝒩  , 

Σ 𝒙𝜇 𝒙

https://arxiv.org/abs/2308.13453
https://arxiv.org/abs/2406.19272


CAN INTERVENTIONS EXTEND BEYOND CBMS?

157

So far, the concept intervention strategies we have considered 

require one to operate on a CBM-like model

Could we potentially extend these ideas to models beyond CBMs?

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


INJECTING KNOWLEDGE TO BLACK BOXES

158

Given a black-box model 𝑓𝜃 𝒙 = 𝑔𝜓 ℎ𝜙 𝒙  and a test sample 𝑥, we may want to 

inject knowledge about the presence or absence of a concept in 𝑥 at test time

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).
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https://arxiv.org/abs/2401.13544


INJECTING KNOWLEDGE TO BLACK BOXES

159

Given a black-box model 𝑓𝜃 𝒙 = 𝑔𝜓 ℎ𝜙 𝒙  and a test sample 𝑥, we may want to 

inject knowledge about the presence or absence of a concept in 𝑥 at test time

If we have a concept-annotated validation set 𝒙 𝑖 , 𝒄 𝑖 , 𝑦𝑖
𝑖
, we can do this!

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


BLACK-BOX INTERVENABILITY: PROBING

160

We first learn a multivariate probe Ƹ𝐜 = 𝜉 𝒛  that predicts all concepts 

given the latent space z = ℎ𝜙 𝑥  using the annotated validation set

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


BLACK-BOX INTERVENABILITY: EDITING

161

Given user-provided concept labels 𝑐′ for sample 𝒙, we edit the 

representation z = ℎ𝜙 𝑥  so that it maps to 𝑐′ as predicted by the probe 𝜉 𝒛

We find a new latent representation 𝐳′ by solving

Concept alignment
Make the latent representation map to the 

set of user-provided concepts c′

Distance Penalty
Keep the new latent 

representation as close as 
possible to the original

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


BLACK-BOX INTERVENABILITY: OUTPUT

162

Finally, fed the edited representation z′ to the second part of the DNN to 

obtain an updated prediction 𝑦′ = 𝑔𝜓 𝑧′

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


WHAT THIS GIVES YOU

163

This process allows you to improve the task accuracy of a black-box model 

when you have extra test-time knowledge in the form of concepts labels

More importantly, you can fine-tune a model to be more receptive to this type of interventions by 

directly optimizing for an edit’s positive effect

A
U

P
R

 (
A

w
A

)

[1] Laguna, Marcinkevǐcs, et al. "Beyond Concept Bottleneck Models: How to Make Black Boxes Intervenable?." NeurIPS (2024).

https://arxiv.org/abs/2401.13544


TUTORIAL OUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4. Q&A + Break

5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions

8. Q&A
164

(Back at 16:15!)



Q&A + BREAK

conceptlearning.github.io/

Back at 16:15 for part II!
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https://conceptlearning.github.io/


TUTORIAL OUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4. Q&A + Break

5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions

8. Q&A
166
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What if you don’t have access to concept supervisions?

THE COST OF BEING GREAT
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THE COST OF BEING GREAT

What if you don’t have access to concept supervisions?



T-CAV requires large sets of examples of each concept of interest:

169

But, obtaining concept labels can be expensive and intractable

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

THE COST OF BEING GREAT



T-CAV requires large sets of examples of each concept of interest:

170

But, obtaining concept labels can be expensive and intractable

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

Can we extract patches automatically? 

THE COST OF BEING GREAT
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Desiderata: We would like to discover concepts / patches that are:

“Wheel”

Meaningful Coherent Important

∼ 𝑓“Car” ( )
“Wheel” “Mirror”

≠

≠

AUTOMATIC CONCEP T EXTRACTION (ACE)

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

https://arxiv.org/abs/1902.03129
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Step 1: Multi-resolution segmentation (why? concepts have different granularities)

Desiderata enforced: meaningfulness

Proposed Solution

AUTOMATIC CONCEP T EXTRACTION (ACE)

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

https://arxiv.org/abs/1902.03129
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Step 2: cluster extracted segments using a hidden layer (which one?) of a CNN as a 
feature extractor (why? ensure invariances). Then get rid of outliers (why? noisy!).

Desiderata enforced: coherence

Proposed Solution

AUTOMATIC CONCEP T EXTRACTION (ACE)

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

https://arxiv.org/abs/1902.03129
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Step 3: use T-CAV with the newly discovered concepts to explain the prediction 
of the sample of interest!

Desiderata enforced: importance

Proposed Solution

AUTOMATIC CONCEP T EXTRACTION (ACE)

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

https://arxiv.org/abs/1902.03129
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What are the most salient discovered 
concepts for some of the ImageNet classes?

AUTOMATIC CONCEP T EXTRACTION (ACE)

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).

https://arxiv.org/abs/1902.03129


176

What are the most salient discovered 
concepts for some of the ImageNet classes?

[1] Ghorbani et al. "Towards automatic concept-based explanations." Advances in Neural Information Processing Systems 32 (2019).
[2] Magister et al. "GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks." arXiv preprint arXiv:2107.11889 (2021).

ACE has also been generalised to learn concepts in Graph 
Neural Networks in GCExplainer (Magister et al. 2021) [2]

AUTOMATIC CONCEP T EXTRACTION (ACE)

https://arxiv.org/abs/1902.03129
https://arxiv.org/abs/2107.11889
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ACE’s hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

Important concepts for underrepresented populations could be removed as outliers!

AUTOMATIC CONCEP T EXTRACTION (ACE)
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ACE’s hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

2. We won’t detect concepts that interact non-linearly with the output labels

Looking at the gradients provides understanding of local (linear) sensitivity

𝑆𝐶,𝑘,𝑙 𝑥 = ∇ℎ𝑙,𝑘 𝑓𝑙 𝑥  . 𝑣𝐶
𝑙

AUTOMATIC CONCEP T EXTRACTION (ACE)



179

ACE’s hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

2. We won’t detect concepts that interact non-linearly with the output labels

Looking at the gradients provides understanding of local (linear) sensitivity

𝑆𝐶,𝑘,𝑙 𝑥 = ∇ℎ𝑙,𝑘 𝑓𝑙 𝑥  . 𝑣𝐶
𝑙

Can we optimize accounting for concept 
usefulness and non-linear interactions?

AUTOMATIC CONCEP T EXTRACTION (ACE)



Step 1: project the input sample to DNN’s intermediate hidden layer Φ 𝒙

180[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

Proposed Solution

COMPLETENESS-AWARE CONCEP T EXTRACTION

https://arxiv.org/abs/1910.07969


Step 2: randomly initialize a latent, learnable concept bank of 𝑘 concepts  𝑪 = 𝒄𝟏, 𝒄𝟐, ⋯ , 𝒄𝒌
𝑇 
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Proposed Solution

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969


Step 3: compute a set of concept scores by projecting the input embedding into the concept space

182

Proposed Solution

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969


Step 4: pass the concepts scores to a learnable model 𝑔 𝒔 = 𝒉 that aims to reconstruct 𝒉 from 𝒔
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Proposed Solution

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969


Step 5: use 𝒉 as the reconstructed hidden layer and predict an output class using 𝑓
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Proposed Solution

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969


Step 6: maximise a “concept completeness score”

185

Proposed Solution

𝑛𝑓 𝒄𝟏, … , 𝒄𝒎 =

sup
𝑔

ℙ𝒙,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝑔 𝑪 𝜙 𝑥 − 𝑎𝑟

ℙ𝑥,𝑦∼𝑉 𝑦 = argmax
𝑦′

𝑓𝑦′ 𝒙 − 𝑎𝑟

DNN’s accuracy via concept projection

Original DNN’s accuracy

Score is ∼ 1 if and only if the projection in the concept space preserves all the 

information needed to predict 𝑦!

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969
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CCE further encourages discovered concepts to be:

1. Coherent: similar samples should remain close in concept-space

2. Diverse: concept vectors should be as distinct from each other as possible

Coherency Diversity

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969
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And it can be applied to different data modalities!

COMPLETENESS-AWARE CONCEP T EXTRACTION

[1] Yeh et al. "On completeness-aware concept-based explanations in deep neural networks." NeurIPS (2020).

https://arxiv.org/abs/1910.07969
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What about CBMs family?We took care of T-CAV & friends…

REMEMBER CONCEP T BOT TLENECKS?



CBMs & co require some known concepts, or we have no bottleneck at all!

And post-hoc CBMs still require one to know which concepts are potentially 
useful for a downstream task!

189
[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

Limitation Being Addressed

LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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Why not simply ask GPT for a set of useful concepts for a specific class?

Proposed Solution

“List the most important features for 
recognizing something as a {class}:”

LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

Proposed Solution

Step 1: Generate a concept set by ”asking” an LLM

[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

Step 2: Use multi-modal contrastive language model (e.g., CLIP) to compute 
similarity of image-text embeddings

Proposed Solution

[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

Step 3: Train DNN activations to align with similarity scores predicted by the 
contrastive LM

Proposed Solution

[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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LABEL-FREE CONCEP T BOT TLENECKS

ICLR23 CVPR23

Step 4: Train a simple (linear) model to map predicted concept scores to tasks

Proposed Solution

[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).
[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification." CVPR (2023).

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
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I’m back!

STRIPPING CBMS TO THEIR BONES

What if we want a CBM, but... we don’t have: 

- Concept supervisions

- Pre-trained contrastive LMs

What’s left??
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What if we want a CBM, but... we don’t have: 

- Concept supervisions

- Pre-trained contrastive LMs

What’s left??
Unsupervised DNN 

activations

𝑐1

𝑐2

𝜽T𝒄 = 𝒚

STRIPPING CBMS TO THEIR BONES

Linear 
model of 𝑐!
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What if we want a CBM, but... we don’t have: 

- Concept supervisions

- Pre-trained contrastive LMs

What’s left??
Unsupervised DNN 

activations

𝑐1

𝑐2

𝜽T𝒄 = 𝒚

Linear 
model of 𝑐!

Can we make a DNN behave 
like a proper linear model?

STRIPPING CBMS TO THEIR BONES



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

198

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

1. [Expressiveness] The relevance weights used to make the output prediction 

must be able to dynamically adapt depending on the input:

199

Linear Model Output:      𝑓 Ԧ𝑥 = 𝜃𝑇 Ԧ𝑥
“Linear-ish DNN” Model output:     𝑓 Ԧ𝑥 = 𝜃 Ԧ𝑥 𝑇 Ԧ𝑥

where 𝜃: 𝒳 → 𝒲 is parameterised as a learnable DNN!

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

2. [Interpretability] If the features are not interpretable (e.g., individual pixels), 

then we should learn a high-level “concept” representation ℎ Ԧ𝑥 :

200

ℎ Ԧ𝑥

Ԧ𝑥 ො𝑥

𝑔 ℎ Ԧ𝑥

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

2. [Interpretability] If the features are not interpretable (e.g., individual pixels), 

then we should learn a high-level “concept” representation ℎ Ԧ𝑥 :
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Linear Model Output:      𝑓 Ԧ𝑥 = 𝜃𝑇 Ԧ𝑥
“Linear-ish DNN” Model output:     𝑓 Ԧ𝑥 = 𝜃 Ԧ𝑥 𝑇ℎ Ԧ𝑥

where 𝜃: 𝒳 → 𝒲 and ℎ: 𝒳 → 𝒵 are parameterised as a learnable DNNs!

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a 

sample, as a linear classifier. 

What does this imply?

202

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a 

sample, as a linear classifier. 

203

∇ℎ Ԧ𝑥 𝑓 Ԧ𝑥 ≈ 𝜃 Ԧ𝑥 Relevance coefficients adapt with the inputs
but they do so in a stable/slow manner

LINEARIZING A DNN



If we want to make a DNN act as a linear model while maintaining its 

expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a 

sample, as a linear classifier. 
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∇ℎ Ԧ𝑥 𝑓 Ԧ𝑥 ≈ 𝜃 Ԧ𝑥

We can encourage this local linearity by including the following training regulariser:

ℒ𝑟𝑒𝑔 Ԧ𝑥 ≔ ∇ Ԧ𝑥𝑓 Ԧ𝑥  − 𝐽 Ԧ𝑥
ℎ Ԧ𝑥

Ԧ𝑥

Relevance coefficients adapt with the inputs
but they do so in a stable/slow manner

LINEARIZING A DNN



This is the idea behind Self Explaining Neural Networks (SENNs)!

205[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

SELF-EXPLAINING NEURAL NETS

https://arxiv.org/abs/1806.07538


Step 1: extract concepts from our input distribution:
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The concept extractor 
ℎ 𝑥 : 𝒳 → 𝒵 can be learnt via 
an autoencoder model or via 
handcrafted feature extractors

SELF-EXPLAINING NEURAL NETS

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

https://arxiv.org/abs/1806.07538


Step 2: use DNN to dynamically predict the set of linear weights for each sample:
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This is done via a weight 
relevance model 𝜃 𝑥 : 𝒳 → 𝒲 
that can be learnt in an end-to-
end fashion

SELF-EXPLAINING NEURAL NETS

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

https://arxiv.org/abs/1806.07538


Step 3: Add regulariser that will encourage local linearity:
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Relevance coefficients adapt with the inputs
but they do so in a stable/slow manner

SELF-EXPLAINING NEURAL NETS

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

https://arxiv.org/abs/1806.07538


Step 4: Generate prediction with the linear form 𝜃 𝑥 𝑇ℎ(𝑥). The explanation is the tuple 

(concept, relevance weight)

209

SELF-EXPLAINING NEURAL NETS

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

https://arxiv.org/abs/1806.07538


When features lack useful semantics, learnt concepts can be understood via prototypical examples:
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SELF-EXPLAINING NEURAL NETS

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

https://arxiv.org/abs/1806.07538


TUTORIAL OUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4. Q&A + Break

5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions

8. Q&A
211



We’ll focus on two main branches of concept-based reasoning:

212

Neural symbolic 
concept reasoning

Causal 
concept reasoning

CONCEP T-BASED REASONING



213

?

TIME TO GET YOUR C*EP TS TOGETHER

Let’s say we have a nice set of concepts, what should we use as 
classification head?
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Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?

Back to square 1!

TIME TO GET YOUR C*EP TS TOGETHER
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Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?

Back to square 1!

Can we do better?

TIME TO GET YOUR C*EP TS TOGETHER
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0 0 1
Concepts Task

FROM INTERVENTIONS TO LOGIC REASONING

Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?
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0 0 1

1 0 0

Concepts Task green light=1

FROM INTERVENTIONS TO LOGIC REASONING

Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?
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0 0 1

1 0 0

0 1 1

Concepts Task ambulance=1

FROM INTERVENTIONS TO LOGIC REASONING

Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?
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0 0 1

1 0 0

0 1 1

1 1 1

Concepts Task green light=1, ambulance=1

Interventions can recover the 
full Conditional Probability / 
Truth Table (CPT/TT)!= NOT        OR

≡≡

FROM INTERVENTIONS TO LOGIC REASONING

Let’s say we have a nice set of concepts, what should we use as 
classification head?
… what about an opaque DNN?



#interventions required to extract full CPT/TT is exponential in #concepts!

220
[1] Barbiero  et al. "Entropy-based logic explanations of neural networks." AAAI (2022).

Limitation Being Addressed

Can we extract a CPT/TT 
more efficiently?

LOGIC-EXPLAINED NETWORKS (LENS)

https://arxiv.org/abs/2106.06804
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Learnable
“attention”
weights

1

0.9

0.1

0.2

⊙ =

Concept
activations

Filtered
concept

activations

LOGIC-EXPLAINED NETWORKS (LENS)

Step 1: Filter concept activations using learnable attention weights 𝛼

Proposed Solution

[1] Barbiero  et al. "Entropy-based logic explanations of neural networks." AAAI (2022).

https://arxiv.org/abs/2106.06804
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Learnable
“attention”
weights

1

0.9

0.1

0.2

⊙ =

Concept
activations

Filtered
concept

activations

min 𝐻(𝛼)

LOGIC-EXPLAINED NETWORKS (LENS)

Step 2: Minimize the entropy of the attention weights 𝛼. Why? Concept set 
should be small!

Proposed Solution

[1] Barbiero  et al. "Entropy-based logic explanations of neural networks." AAAI (2022).

https://arxiv.org/abs/2106.06804
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Learnable
“attention”
weights

1

0.9

0.1

0.2

⊙ =

Concept
activations

Filtered
concept

activations

min 𝐻(𝛼)

LOGIC-EXPLAINED NETWORKS (LENS)

Step 3: Solve task with the selected concepts. Why? Concept set should be relevant!

Proposed Solution

[1] Barbiero  et al. "Entropy-based logic explanations of neural networks." AAAI (2022).

https://arxiv.org/abs/2106.06804
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Learnable
“attention”
weights

1

0.9

0.1

0.2

⊙ =

Concept
activations

Filtered
concept

activations

≡

Transparent
symbolic sentence

= NOT        OR

min 𝐻(𝛼)

LOGIC-EXPLAINED NETWORKS (LENS)

Step 4: Derive explanation in DNF from the (empirical) truth table

Proposed Solution

[1] Barbiero  et al. "Entropy-based logic explanations of neural networks." AAAI (2022).

https://arxiv.org/abs/2106.06804
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Learnable
“attention”
weights

1

0.9

0.1

0.2

⊙ =

Concept
activations

Filtered
concept

activations

≡

Transparent
symbolic sentence

= NOT        OR

min 𝐻(𝛼)

[1] Barbiero, Pietro, et al. "Entropy-based logic explanations of neural networks." AAAI Conference on Artificial Intelligence. PMLR, 2022.

Step 4: Derive explanation in DNF from the (empirical) truth table

Proposed Solution

What if we know the logic program, 
but we don’t have concept supervisions?

LOGIC-EXPLAINED NETWORKS (LENS)

https://arxiv.org/abs/2106.06804
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Replace task predictor with a pre-defined logic program!

Proposed Solution

[1] Manhaeve et al. "Deepproblog: Neural probabilistic logic programming." NeurIPS 2018.

Pre-defined
logic programUnsupervised concepts

(“neural predicates”)

𝐶1

𝐶2
= NOT C1 OR C2

NEURAL PROBABILISTIC LOGIC PROGRAMMING

https://arxiv.org/abs/1805.10872
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Replace task predictor with a pre-defined logic program!

Proposed Solution

Pre-defined
logic programUnsupervised concepts

(“neural predicates”)

𝐶1

𝐶2
= NOT C1 OR C2

NEURAL PROBABILISTIC LOGIC PROGRAMMING

[1] Manhaeve et al. "Deepproblog: Neural probabilistic logic programming." NeurIPS 2018.

Are symbolic classification heads sufficient 
for a model to be interpretable?

https://arxiv.org/abs/1805.10872


⟹ = NOT C1 OR C2

SEMANTIC & FUNCTIONAL OPACITY

228



⟹ = NOT C1 OR C2

C1: 

C1: 

Semantic opacity

Safe!

Danger!

A symbolic classification head alone does not guarantee semantic transparency
(… as well as Logistic Regression, Additive Models, Decision Trees, etc…)!

SEMANTIC & FUNCTIONAL OPACITY

229
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Semantic
transparency

Functional 
opacity

Concept-based 
learning

SEMANTIC & FUNCTIONAL OPACITY
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Semantic
opacity Functional transparency

Semantic
transparency

Functional 
opacity

Concept-based 
learning

Symbolic 
reasoning

𝐶1

𝐶2
= NOT C1 OR C2

SEMANTIC & FUNCTIONAL OPACITY
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Semantic
opacity Functional transparency

Semantic
transparency

Functional 
opacity

Concept-based 
learning

Symbolic 
reasoning

𝐶1

𝐶2
= NOT C1 OR C2

Can we combine concept-based learning 
with symbolic reasoning?

SEMANTIC & FUNCTIONAL OPACITY
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NOT C1 OR C2

Concepts
semantic transparency

Logic rule / linear map
functional transparency

Step 1: DNN generates both concept activations & rule parameters (neural generation)

Proposed Solution

ICML23 NeurIPS24
[1] Barbiero et al. "Interpretable neural-symbolic concept reasoning." International Conference on Machine Learning. PMLR, 2023.
[2] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

NEURAL-SYMBOLIC CONCEP T REASONING

https://arxiv.org/abs/2304.14068
https://arxiv.org/abs/2407.15527v1
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NOT C1 OR C2

exec

Concepts
semantic transparency

Logic rule / linear map
functional transparency

Interpretable 
execution

Step 1: DNN generates both concept activations & rule parameters (neural generation)
Step 2: Symbolic engine executes the rule using concept activations (interpretable execution) 

Proposed Solution

ICML23 NeurIPS24

NEURAL-SYMBOLIC CONCEP T REASONING

[1] Barbiero et al. "Interpretable neural-symbolic concept reasoning." International Conference on Machine Learning. PMLR, 2023.
[2] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2304.14068
https://arxiv.org/abs/2407.15527v1


235[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Step 1: DNN predicts concept activations

𝑝(𝑐 ∣ 𝑥)
= 0.2

= 0.9

= 0.1

Concepts
semantic transparency

CONCEP T-BASED MEMORY REASONING

Proposed Solution

https://arxiv.org/abs/2407.15527v1
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Concepts
semantic transparency

𝑝(𝑐 ∣ 𝑥)

𝑝(𝑠 ∣ 𝑥)

rulebook
𝑒1

𝑒2

0.8

0.2

~
𝑒2

= 0.2

= 0.9

= 0.1

CONCEP T-BASED MEMORY REASONING

Step 2: DNN predicts embedding to be selected from the latent rulebook

Proposed Solution

[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2407.15527v1
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NOT C1 AND C2

Concepts
semantic transparency

Logic rule / linear map
functional transparency

𝑝(𝑐 ∣ 𝑥)

𝑝(𝑠 ∣ 𝑥)

rulebook
𝑒1

𝑒2

0.8

0.2

~
𝑒2

𝑝(𝑟 ∣ 𝑠) Positive 0.1 1 0

Negative 0.6 0 0

Irrelevant 0.3 0 1

= 0.2

= 0.9

= 0.1

CONCEP T-BASED MEMORY REASONING

Step 3: DNN decodes selected embedding into 3 states: positive, negative, irrelevant

Proposed Solution

[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2407.15527v1
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NOT C1 AND C2

Concepts
semantic transparency

Logic rule / linear map
functional transparency

Interpretable 
execution𝑝(𝑐 ∣ 𝑥)

𝑝(𝑠 ∣ 𝑥)

rulebook
𝑒1

𝑒2

0.8

0.2

~
𝑒2

𝑝(𝑟 ∣ 𝑠) Positive 0.1 1 0

Negative 0.6 0 0

Irrelevant 0.3 0 1

= 0.2

= 0.9

= 0.1

1 − 0.2 × 0.9 × 1 = 0.72

[1] Debot, David, et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

CONCEP T-BASED MEMORY REASONING

Step 4: Execute the rule combining concept states and activations to predict the 
output label

Proposed Solution

https://arxiv.org/abs/2407.15527v1


CMR has 3 key features:

• Universal approximator akin to opaque DNNs (Theorem 4.1)
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CONCEP T-BASED MEMORY REASONING

[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2407.15527v1


CMR has 3 key features:

• Universal approximator akin to opaque DNNs (Theorem 4.1)

• Provides both local and global interpretability by design

240

CONCEP T-BASED MEMORY REASONING

Inference mechanisms can 
only be selected from a finite 
set of transparent rules!

[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2407.15527v1


CMR has 3 key features:

• Universal approximator akin to opaque DNNs (Theorem 4.1)

• Provides both local and global interpretability by design

• The concept memory allows formal verification of properties

241

CONCEP T-BASED MEMORY REASONING

”Does a property hold no matter which rule is selected?”

[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

https://arxiv.org/abs/2407.15527v1
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ARE WE JUST TALKING HOT AIR?
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• Algorithmic reasoning

• + OOD generalization

• - discrete representations

• Neural nets

• - OOD generalization

• + continuous representations

NEURAL ALGORITHMIC REASONING

[1] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2105.02761
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

NEURAL ALGORITHMIC REASONING

[1] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2105.02761
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

• + (potentially) find new heuristics!

How?

NEURAL ALGORITHMIC REASONING

[1] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2105.02761
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

• + (potentially) find new heuristics!

Visited 
nodes

Breadth
First 

Search

NEURAL ALGORITHMIC REASONING

[1] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2105.02761
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

• + (potentially) find new heuristics!

Visited 
nodes

Breadth
First 

Search

Time to
visit Greece!

NEURAL ALGORITHMIC REASONING

[1] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2105.02761
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

• + (potentially) find new heuristics!

Visited 
nodes

has been vis.

has vis. neighbor

Breadth
First 

Search

[1] Georgiev et al. "Algorithmic concept-based explainable reasoning." AAAI (2022).

Concepts

CONCEP T-BASED NEURAL ALGORITHMIC 

REASONING

https://arxiv.org/abs/2107.07493
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• Execute algorithms with DNNs

• + OOD generalization (from algorithm exec)

• + adapt to real-world inputs (e.g., images)

• + (potentially) find new heuristics!

Visited 
nodes

Concepts

has been vis.

has vis. neighbor

Breadth
First 

Search
exec

Interpretable 
execution Time to

visit Greece!

NOT has been vis. AND has vis. neighbor

Logic rule

CONCEP T-BASED NEURAL ALGORITHMIC 

REASONING

[1] Georgiev et al. "Algorithmic concept-based explainable reasoning." AAAI (2022).

https://arxiv.org/abs/2107.07493


We’ll focus on two main branches of concept-based reasoning:

250

Neural symbolic 
concept reasoning

Causal 
concept reasoning

SHOULD INTERPRETABILIT Y BOTHER ABOUT 

CAUSALIT Y?



Sometimes intervening on wrongly predicted concepts helps…
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𝑤 = 10

Intervene!

SHOULD INTERPRETABILIT Y BOTHER ABOUT 

CAUSALIT Y?



Sometimes intervening on wrongly predicted concepts helps… 

and sometimes it doesn’t! 

Causal analysis can provide us with insights!
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𝑤 = 0

Intervene!

Yes, but…

SHOULD INTERPRETABILIT Y BOTHER ABOUT 

CAUSALIT Y?
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Data generating 
mechanism

hit gas accelerate

CAUSAL OPACITY

• Causal reliability: discover causal mechanisms of the data generating process



• Causal reliability: discover causal mechanisms of the data generating process

• Causal opacity: discover causal mechanism of a model’s inference process

254

Data generating 
mechanism

concept task

task concept

hit gas accelerate

CBM #2

CBM #1

CAUSAL OPACITY
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

CBMs can answer association queries (duh…)

CONCEP T-BASED CAUSAL REASONING



CBMs can answer association queries (duh…)

However, intervening on        influences the task, while intervening on         does not!
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

𝑤 = 0

Intervene!

CONCEP T-BASED CAUSAL REASONING



𝑤 = 0

Intervene!

CBMs can answer association queries (duh…)

However, intervening on        influences the task, while intervening on         does not!
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

Can we measure the causal influence of a concept 
on the task?

CONCEP T-BASED CAUSAL REASONING
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Step 1: Compute expected value of the task with 𝑑𝑜(𝑐𝑖 = 1)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

light=1

𝔼 brake 𝑑𝑜 light = 1 = 0.2

CAUSAL CONCEP T EFFECT

Proposed Solution

[1] Goyal et al. "Explaining classifiers with causal concept effect (cace)." arXiv (2019).

https://arxiv.org/abs/1907.07165
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

light=1

light=0

𝔼 brake 𝑑𝑜 light = 0 = 1

Step 2: Compute expected value of the task with 𝑑𝑜(𝑐𝑖 = 0)

𝔼 brake 𝑑𝑜 light = 1 = 0.2

CAUSAL CONCEP T EFFECT

Proposed Solution

[1] Goyal et al. "Explaining classifiers with causal concept effect (cace)." arXiv (2019).

https://arxiv.org/abs/1907.07165
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

light=1

light=0

𝔼 brake 𝑑𝑜 light = 1 = 0.2

𝔼 brake 𝑑𝑜 light = 0 = 1

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

CaCE = 𝔼 brake 𝑑𝑜 light = 1 − 𝔼 brake 𝑑𝑜 light = 0 = −0.8

CAUSAL CONCEP T EFFECT

Proposed Solution

[1] Goyal et al. "Explaining classifiers with causal concept effect (cace)." arXiv (2019).

https://arxiv.org/abs/1907.07165
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))
cowboy=1

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

cowboy=0

𝔼 brake 𝑑𝑜 cowboy = 1 = 0.5

𝔼 brake 𝑑𝑜 cowboy = 0 = 0.5

CAUSAL CONCEP T EFFECT

Proposed Solution

[1] Goyal et al. "Explaining classifiers with causal concept effect (cace)." arXiv (2019).

https://arxiv.org/abs/1907.07165
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Association

What if the model sees a green light?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

Intervention

What if I set the light color to red?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))
cowboy=1

𝔼 brake 𝑑𝑜 cowboy = 1 = 0.5

𝔼 brake 𝑑𝑜 cowboy = 0 = 0.5

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

CaCE = 𝔼 brake 𝑑𝑜 cowboy = 1 − 𝔼 brake 𝑑𝑜 cowboy = 0 = 0

cowboy=0

CAUSAL CONCEP T EFFECT

Proposed Solution

[1] Goyal et al. "Explaining classifiers with causal concept effect (cace)." arXiv (2019).

https://arxiv.org/abs/1907.07165
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Association

Intervention

Counterfactual

What if the model sees a green light?

What if I set the light color to red?

What would have been predicted in 
the same circumstance had a car 
crash be seen?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡, 𝑐𝑟𝑎𝑠ℎ)

CBMs cannot answer counterfactual queries!

Limitation Being Addressed

ICLR25 ICML22

Concepts

[1] Dominici et al. "Counterfactual Concept Bottleneck Models." ICLR (2025).
[2] Abid et al. "Meaningfully debugging model mistakes using conceptual counterfactual explanations." ICML (2022).

COUNTERFACTUAL CBMS

https://arxiv.org/abs/2402.01408
https://arxiv.org/abs/2106.12723
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Association

Intervention

Counterfactual

What if the model sees a green light?

What if I set the light color to red?

What would have been predicted in 
the same circumstance had a car 
crash be seen?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡, 𝑐𝑟𝑎𝑠ℎ)

Concepts

Counterfactual
concepts

ICLR25 ICML22

COUNTERFACTUAL CBMS

Proposed Solution

Step 1: Generate counterfactual concept activations 

[1] Dominici et al. "Counterfactual Concept Bottleneck Models." ICLR (2025).
[2] Abid et al. "Meaningfully debugging model mistakes using conceptual counterfactual explanations." ICML (2022).

https://arxiv.org/abs/2402.01408
https://arxiv.org/abs/2106.12723
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Association

Intervention

Counterfactual

What if the model sees a green light?

What if I set the light color to red?

What would have been predicted in 
the same circumstance had a car 
crash be seen?

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡)

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑑𝑜(𝑙𝑖𝑔ℎ𝑡))

𝑃 𝑏𝑟𝑎𝑘𝑒 𝑙𝑖𝑔ℎ𝑡, 𝑐𝑟𝑎𝑠ℎ)

Concepts

Counterfactual
concepts

ICLR25 ICML22

COUNTERFACTUAL CBMS

Proposed Solution

Step 2: Compute causal effect on the task!

[1] Dominici et al. "Counterfactual Concept Bottleneck Models." ICLR (2025).
[2] Abid et al. "Meaningfully debugging model mistakes using conceptual counterfactual explanations." ICML (2022).

https://arxiv.org/abs/2402.01408
https://arxiv.org/abs/2106.12723


266

I’m back!

DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions…
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Intervening on “car crash” does 
not increase the likelihood of 
hitting the brakes!

I’m back!

DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions:

• Concepts are mutually independent
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Intervening on “car crash” does 
not increase the likelihood of 
hitting the brakes!

• Concepts are direct causes of the task

Intervening  on “car crash” 
directly causes the car to 
brake!

So far, we have been making 2 strong assumptions:

• Concepts are mutually independent

I’m back!

DIRECT COUNTERFACTUAL DEPENDENCE



[1] Dominici et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

269

CBMs (as most XAI methods) assume direct counterfactual dependence!

Limitation Being Addressed

ICLR25 CLeaR24

CONCEP T GRAPH MODELS

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534
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ICLR25 CLeaR24

CONCEP T GRAPH MODELS

Enforce inference through a concept graph!

Proposed Solution

[1] Dominici et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534
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ICLR25 CLeaR24

Causal concept 
dependencies of the 

inference mechanism

CONCEP T GRAPH MODELS

Enforce inference through a concept graph!

Proposed Solution

[1] Dominici et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534
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ICLR25 CLeaR24

CBMs DNNs

CONCEP T GRAPH MODELS

The concept graph can be:
- Given as a prior

Proposed Solution

[1] Dominici et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534
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ICLR25 CLeaR24

Causal 
discovery

CONCEP T GRAPH MODELS

The concept graph can be:
- Given as a prior
- Extracted from data with causal discovery techniques

Proposed Solution

[1] Dominici et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534
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ICLR25 CLeaR24

Differentiable 
DAG learning

min ℒDAG

[1] Dominici, Gabriele et al. "Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning." ICLR 2025.
[2] Moreira, Ricardo, et al. "Diconstruct: Causal concept-based explanations through black-box distillation.” CLeaR 2024.

CONCEP T GRAPH MODELS

The concept graph can be:
- Given as a prior
- Extracted from data with causal discovery techniques
- Obtained with differentiable DAG learning

Proposed Solution

https://arxiv.org/abs/2405.16507
https://arxiv.org/abs/2401.08534


TUTORIAL OUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4. Q&A + Break

5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions

8. Q&A
275



276[1] Goguen "What is a concept?." International Conference on Conceptual Structures. 2005.

AMAZING CONCEP TS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!

• Prototypes (clustering)

https://link.springer.com/chapter/10.1007/11524564_4
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AMAZING CONCEP TS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!

• Prototypes (clustering)

• Symbols (logic, neural-symbolic AI)
apple ←  red ∧ round

[1] Goguen "What is a concept?." International Conference on Conceptual Structures. 2005.

https://link.springer.com/chapter/10.1007/11524564_4


Concept interpretability is not the first nor the only area focusing on concepts!

• Prototypes (clustering)

• Symbols (logic, neural-symbolic AI)

• Topic models (semantic analysis)

278documents
w

o
rd

s

“medicine”

AMAZING CONCEP TS & WHERE TO FIND THEM

[1] Goguen "What is a concept?." International Conference on Conceptual Structures. 2005.

https://link.springer.com/chapter/10.1007/11524564_4


Concept interpretability is not the first nor the only area focusing on concepts!

• Prototypes (clustering)

• Symbols (logic, neural-symbolic AI)

• Topic models (semantic analysis)

• Factors of variation (disentanglement learning)

279

AMAZING CONCEP TS & WHERE TO FIND THEM

[1] Goguen "What is a concept?." International Conference on Conceptual Structures. 2005.

https://link.springer.com/chapter/10.1007/11524564_4


280

AMAZING CONCEP TS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!

… but it has a few key differences:

• Focus on intervenability & different forms of transparency (semantic, 

functional, causal)

• For this reason, often different assumptions hold (e.g., concepts don’t have to 

be independent as in disentanglement learning!)



Label-free models are currently not as reliable as supervised ones

• How to effectively intervene in label-free settings?

281

OPEN CHALLENGES



Label-free models are currently not as reliable as supervised ones

• How to effectively intervene in label-free settings?

• How to construct robust annotations without pre-trained domain-specific models?

282

OPEN CHALLENGES



Concept-based models are currently not designed nor integrated to scale to large models

• Where (autoregressive, sentence, or paragraph) should we look for/place concepts in large models? 

• Should large models reason based on concepts?

283
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OPEN CHALLENGES



Concept-based models are currently not designed nor integrated to scale to large models

• Where (autoregressive, sentence, or paragraph) should we look for/place concepts in large models? 

• Should large models reason based on concepts?

• Which guidelines should we follow to deploy concept-based models in the wild?

284

Concept 
based 
model

End user

?

OPEN CHALLENGES



Some concepts are intrinsically hard to represent or intervene on

• How to deal with abstract (e.g., moral) or subjective concepts (e.g., aesthetics)?

285

OPEN CHALLENGES



Some concepts are intrinsically hard to represent or intervene on

• How to deal with abstract (e.g., moral) or subjective concepts (e.g., aesthetics)?

• How to construct and intervene on multi-modal concepts?

286

OPEN CHALLENGES



Cornerstone papers highlighted in this presentation

Extended bibliography on the tutorial website and in the slide deck’s appendix
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RESOURCES conceptlearning.github.io/

https://conceptlearning.github.io/


Some XAI libraries implement concept-based techniques (check out tutorial website!)

We are working on PyTorch Concepts (PyC), a library dedicated to concept-based interpretability

• APIs are designed to implement existing models, but also to support the development of new ones

• Currently supports concept-based: data types, layers, interventions, metrics, models

• The PyC team is publishing hands-on tutorials on Medium!

288

@github @medium

RESOURCES

[1] https://github.com/pyc-team/pytorch_concepts 
[2] https://medium.com/@pyc.devteam 

https://github.com/pyc-team/pytorch_concepts
https://medium.com/@pyc.devteam


Thank you for your time! Before leaving, remember that concept-based interpretability:

• is connected to other AI areas, but it focuses on specific research questions (intervenability and 

different forms of opacity)

• can make things easier (human interaction)… or worse (need for annotations)

• is a relatively young research field, so there’s a lot of work to do for all of us!

Read our Medium stories to implement your first concept-based model in <15 minutes! 

289

A FEW THINGS TO BRING BACK HOME!

conceptlearning.github.io/

https://conceptlearning.github.io/
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