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WHAT IS THIS TUTORIAL ABOUT?

Deep
Learning

We will look at how Concept Learning (CL) can be used to design interpretable Deep Neural Networks



UTORIAL GOALS

Our main goals for this tutorial are threefold:

1.

Provide a non-exhaustive but well-rounded overview of concept
learning (CL).

Convince you that concept representations can be very useful
for designing powerful but interpretable neural models.

Bring together a variety of resources (surveys, method papers,
libraries, etc.) to facilitate access to the current state of CL.



WHAT IS THIS TUTORIAL NOT ABOUT?



WHAT IS THIS TUTORIAL NOT ABOUT?

We will not have time to dive deep into:

1. “Traditional” explainable Al (XAl) methodologies

Example of GradCAM and other saliency methods (taken from [2])


https://arxiv.org/abs/1602.04938
https://arxiv.org/pdf/1610.02391

WHAT IS THIS TUTORIAL NOT ABOUT?

We will not have time to dive deep into:

1. “Traditional” explainable Al (XAl) methodologies

Interpretable

Machine Learning

A Guide for Making
Black Box Models Explainable

Christoph Molnar

Interpretable Machine Learning
Christoph Molnar
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Link to Book


https://christophm.github.io/interpretable-ml-book/

WHAT IS THIS TUTORIAL NOT ABOUT?

We will not have time to dive deep into:

1.

C?ﬂ'.li;{’g
Bk

The Mythos of Interpretability To Explain or to Predict? Explanation Theory
Lipton et al. (2018) [1] Galit (2018) [2] Bromberger (1992) [3]



https://arxiv.org/abs/1606.03490
https://projecteuclid.org/journals/statistical-science/volume-25/issue-3/To-Explain-or-to-Predict/10.1214/10-STS330.full
https://arxiv.org/abs/2103.11251
https://web.stanford.edu/group/cslipublications/cslipublications/bromberger-corpus/On-What-We-Know-We-Dont-Know.pdf

WHAT IS THIS TUTORIAL NOT ABOUT?

We will not have time to dive deep into:

1.
2.

3. Connections with Mechanistic Interpretability

Circuits
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https://distill.pub/2020/circuits/zoom-in/

WHAT IS THIS TUTORIAL NOT ABOUT?

We will not have time to dive deep into:

1.
2.

3. Connections with Mechanistic Interpretability
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Distill Circuits Thread Anthropic Circuits Thread
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https://distill.pub/2020/circuits/
https://transformer-circuits.pub/

UTORIAL OUTLINE

Introduction

e I N I

Supervised Concept Learning
Concept Interventions

Q&A + Break

Unsupervised Concept Learning
Reasoning With Concepts

Future Directions

Q&A
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Mateo

UTORIAL QUTLINE

1. Introduction

2. Supervised Concept Learning

3. Concept Interventions

4.

© & O O
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UTORIAL QUTLINE

1.

2.

4
3. é‘\%

[ 4. Q&A + Break (10 mins + 30 mins)J
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Pietro

UTORIAL QUTLINE

1
2.
3

4.

16:15 _ 1750

(5. Unsupervised Concept Learning

6. Reasoning With Concepts

7. Future Directions
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UTORIAL QUTLINE

17:50 - 18:
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UTORIAL WEBSITE AND MATERIALS

This tutorial's slides, schedule, and resources are in our website:

https://conceptlearning.github.io/


https://conceptlearning.github.io/

UTORIAL WEBSITE AND MATERIALS

Throughout the tutorial, watch for QR codes to relevant references

CONCEPT BOTTLENECK MODELS (CBMS

CBMs decompose a DNN into two functions:

1. Aconcept encoder g(x) = € predicting concepts from the input features

2. Alabel predictor f(€) = § predicting task labels from the predicted concepts
Input Bottleneck

Cc
5 Cysts )¢ Prediction

« Sclerosis o
P - f(f'.) Osteoarthritis
4 Grade 2
i~iBone Spurs J
i(.i Narrow joint space §:{
OFFa{0)
P(C|X) P(Y|0) ot
@ P 0
—

Citation + Hyperlink
(if you download slides) QR code to paper/reference/extra material 17



UTORIAL QUTLINE

1. Introduction




A SWISS ARMY KNIFE FOR Al

Artificial Intelligence (Al) has experienced a boom in the last decade
driven by so-called Deep Neural Networks (DNNs)

91(x)
hg HIDDEN

g2(hy)

OUTPUT

giv1(h;) = oW 1h; + b;yq)

Goal: learn {Wy, by, Wy, b} st. (g o0 g0 g)(x) = Y=y
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https://deeplearningcourses.com/c/deep-reinforcement-learning-in-python

HE POWER OF SCALE

Scaling up DNNs can lead to expressive and generalisable models:

-G+ AlphaGo
A LOT of data, _

money, time,
and sweat

20


https://www.nature.com/articles/nature16961
https://arxiv.org/abs/2303.08774
https://www.nature.com/articles/s41586-021-03819-2
https://arxiv.org/abs/2112.10752

HE BLACK-BOX PROBLEM

Scale, however, leads to notoriously complex models!

[9216 in, 4096 out)
[384 in, 192 out]

Conv 2 - 5x5
Backward
[192 in, 64 out]
Forward / Ba: ard
[256 in, 256 out]

Conv 1 - 11x11
Forward
[3in, 64 out]

Conv 4 - 3x3
orwar
[384 in, 256 out]
Conv 2 - 5x5
Weight Update

Fully Conngted 8
Forward / Bal\gvard
[4096 in, 1000 Ng]

Conv 4 - 3x3
Weight Update

Conv 4 - 3x3
Backward
[256 in, 384 out]

Conv 5 - 3x3
Weight Update

Conv 2 - 5x5
Forward
(64 in, 192 out]

Fully Connected 7

Forward / Backward *
T Graphcore
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https://www.graphcore.ai/posts/what-does-machine-learning-look-like

HE BLACK-BOX PROBLEM

Scale, however, leads to notoriously complex models!

Black box Functions
Deep Neural Networks

/‘ Highly parametric \
®* Complex forward passes o - = A
® Continuous activations ~y X —> y
®* Sensitive to initial states -
and update rules

N J

DNNs are "black-box” models

22



HE FLIP SIDE OF THE COIN

Blindly using black-box models can lead to all sorts of problems:

Wrongfully Accused
by an Algorithm

In what may be the first known case of its kind, a faulty facial
recognition match led to a Michigan man’s arrest for a crime he

did not commit.

Why Amazon’s Automated Hiring Predictive policing algorithms are racist.
Tool Discriminated Against Women They need to be dismantled.

23


https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/

HE FLIP SIDE OF THE COIN

It's not all bad news ©



https://www.telegraph.co.uk/technology/2018/07/27/ibm-watson-ai-criticised-giving-unsafe-cancer-treatment-advice/
https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/

EXPLAINING DNNS

Recent advances in Al came with a rise in interest in making these
models “interpretable”

e in HOW to Bi; o~ .
: ue Decision M0 Build Atificig] fygopr
CI0BLOG . Grapple With AI S Opaq % Ca T ntell’g nce
nies oblems 0,
Cog;ggs nizations investigating how Al solves probt Puter Systemng Need ¢ rust
Pr Xerox's PARC Capital On® among o162 nght :ZderStand tl'me] Sp.
oo Opinion Artificial intelligence FORBES > INNOVATION > ENTERPRISE TECH WtheYdOD’t eandCaUSahty
Beware the rise of the black box Building Trust In Al: The
algorithm Case For Transparency

WHO calls for safe and ethical Al Al—and

ses need explainable
for health

Why busines

how to deliver it

16 May 2023 | Departmental update |Reading time: 2 min (507 words) September 29, 2022 | Article
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EXPLAINING DNNS

This interest has manifested itself at the regulatory/legal level

General Data Protection Regulations (GDPR, 2016):

» “The data subject shall have the right not to be subject EU Al Act (2024):

to a decision based solely on automated processing, « "Any affected person subject to a decision which is

including profiling,.." (Art. 22) taken by.. a high-risk Al system ... shall have the right
« The data subject has the right to “meaningful to obtain from the deployer clear and meaningful

information about the logic involved” in the decision. explanations (Art. 86)
(Art. 13 and 15)

0) 4L (e
ﬂ'u]’"
=) z)

27


https://gdpr-info.eu/art-22-gdpr/
https://artificialintelligenceact.eu/

EXPLAINING DNNS

Researchers in Explainable Artificial Intelligence (XAI*) have
developed a significant number of methods to explain DNNs

Explainable Artificial O
Intelligence (XAl) T ' I_ R

(DARPA 2016) (EU Horizon Program)

*Not to be confused with a certain bird-related company

28



FIRST THINGS FIRST: TERMINOLOGY

Welcome to the Wild West of XAl terminology
5 Ol

Ry

O

Goebel ;t él,.( _ Freiesleben et al. (2023)
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Gilpin et al. (2018)
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Rudin et al. (2019)

Barredo Arrieta et al. (2020)



FIRST THINGS FIRST: TERMINOLOGY

Here we will use some the following definitions by Gilpin et al. [1]:

- Explainability (why): the ability to answer questions of the form

"why does this particular input lead to that particular output?”

- Interpretability (how): the ability to describe “the internals of a

system in a way that is understandable to humans.’

os 50

Ol
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FEATURE ATTRIBUTION

XAl methods have traditionally explained a model's prediction by
estimating how important each input feature is for the output

Output =04 Output = 0.4

[

Age =65 —s

Age =65
Sex=F — sex=F
BP =180

BMI = 40

BP =180 —
BMI =40 —

L o3
-]

Base rate = 0.1 Base rate=0.1

SHAP (Scott et al, 2017)

We call these feature importance or feature attribution methods

OkRE, 1@
w .."ii*'J
S v
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https://arxiv.org/abs/1705.07874

SALIENCY: FEATURE ATTRIBUTION IN DNNS

DNN-specific attribution methods are called saliency methods

X
f(x ; 9) af(x)
These are usually computed by measuring model sensitivity via its gradient ];;y
ONE0,


https://arxiv.org/pdf/1610.02391

WHAT'S WRONG WITH FEATURE ATTRIBUTION?



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

1. Low-level features like individual pixels are not always
semantically meaningful:

Can you guess what this is?

[1] Andrey Armyagov/Shutterstock

34



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

1. Low-level features like individual pixels are not always
semantically meaningful:

35



WHAT'S WRONG WITH FEATURE ATTRIBUTION?

2. Saliency maps lack of actionability!

Original Image

What does this really tell you about how the model made a prediction?

36


https://arxiv.org/abs/1906.07983

WHAT'S WRONG WITH FEATURE ATTRIBUTION?

3. Several saliency methods fail very simple sanity checks

Cascading randomization
from top to bottom layers

- > g : 3§ B B

© v"‘, "™ = a a m m

. § o8 3 o3 If § : : § 3 ;¥ i:§y:yoyoyoq

i %ggagg B 84 §. 3 i f 0§ i & & ¢ BRI IR I I N
: E 8% § 3F 25 <5 P E T .
= QOOMO 000 o * *ERERAEEREEET GRS S
- e - Guided GradCAM " | €3 i | €3 €y 2

R&n::;m '.‘ ." 1 Integrated Gradients 3 .A 4
S a S 7
Random training labels do not always Random weights do not always lead to random maps [1]

lead to random maps [1]
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https://arxiv.org/abs/1810.03292

WHAT'S WRONG WITH FEATURE ATTRIBUTION?

4. Saliency methods are susceptible to adversarial attacks [1,2]

Original Image Manipulated Image

10

e vm
L g

7%

i

OFRy;

vz
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https://arxiv.org/abs/1906.07983
https://arxiv.org/pdf/1710.10547

WHAT'S WRONG WITH FEATURE ATTRIBUTION?

How can we go around the limitations of feature attribution?

Here, we will focus on using so-called
‘concepts” to construct explanations



WHAT ARE CONCEPTS?

Concepts are high-level and semantically meaningful units of
information

Task: bird species

Explanation of the prediction:
- wing color

- beak length

- tail shape

Concepts are terms or units of information used by domain experts
to communicate or explain things to each another

40



A MAP OF CONCEPT LEARNING

Concept
Learning

Do you have training concept labels?

No

Yes


https://arxiv.org/abs/2312.12936

A MAP OF CONCEPT LEARNING

Concept
Learning

Do you have training concept labels?

Yes

Can you modify the model?

@ In the first third of this tutorial, we will discuss supervised concept learning

42



A MAP OF CONCEPT LEARNING

Concept
Learning

Do you have training concept labels?

No

Can you modify the model?

@ The second third discusses unsupervised concept learning approaches

43



A MAP OF CONCEPT LEARNING

Concept
Learning

Do you have training concept labels?

No

Yes

Concepts Reasoning

Finally, in the last third we discuss applications of CL to symbolic reasoning

44



UTORIAL QUTLINE

2. Supervised Concept Learning




DIFFERENT LEVELS OF SUPERVISION

"Supervised” is a loaded term. In this tutorial's context,
"'supervised” means a method has access to “concept” labels

MO c®

Xstri es
o lays eggs 1
has scales \ / 0\

has wings 1
eatsonlyplants | _ | 0
eats meat 1
black wings 1
is colorful / \0 /
has teeth 0

Sparse sets of images containing a concept Dense binary vector annotations

These labels could come besides other downstream task “labels”

46



POST-HOC CONCEPT LEARNING

We will start by looking into supervised post-hoc concept learning:

A trained DNN f(x; 6) Sparse concept annotations Concept-based Explanations
Xstripes ¥ | ocal
%\\/ grdss How important is “stripes” for a prediction?
nﬂy/ <, w
//‘//‘/ ‘ / j\;’ﬁ ///,f ‘,.,;«z‘ - Glo bal.
B)&Egg | ),'} ) how important is “grass” for the class "cow™?
= /i /
Given We Want

47



WHY SHOULD WE EVEN ATTEMPT THIS?

Evidence suggests DNNs may predict based on concepts
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https://arxiv.org/abs/1704.05796

WHY SHOULD WE EVEN ATTEMPT THIS?

Evidence suggests DNNs may predict based on concepts
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https://distill.pub/2017/feature-visualization/

WHY SHOULD WE EVEN ATTEMPT THIS?

Evidence suggests DNNs may predict based on concepts

Activating Samples Neuron Maximisation

50


https://distill.pub/2017/feature-visualization/

CONCEPTS ARE NOT ALWAYS LOCALISED

Concepts may not be always localised to specific neurons/maps
but they may be distributed across the DNN's latent space

The same units appear to represent different concepts

This is sometimes called Polysemanticity (Olah et al., 2020) OF®0)
e .:'L:!ESE:--I
LS
P o & r 1

. » [ Y L
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https://arxiv.org/abs/1801.03454

CONCEPTS ARE NOT ALWAYS LOCALISED

Could we then try and capture directions in the latent
space that are associated with known concepts?



https://arxiv.org/abs/1801.03454

ESTING WITH CONCEPT ACTIVATION VECTORS

This is the idea behind T-CAV (Testing with concept activation vectors)

How sensitive is the prediction of zebra is to the presence of the concept of “stripes”?

(e.g., neural network)

zebra-ness
_LIE és

Was striped concept important TCAY seors for S
to this zebra image classifier?

= ;4(,((% « machineA Ig:::iendg model ])( Z )

striped not striped
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https://arxiv.org/abs/1711.11279

PARTITIONING THE NETWORK

Step 1: Choose an intermediate layer f;: R™ —- R™ with m neurons

fi : R" - R™ hix:R™ = R

B K™ class

m


https://arxiv.org/abs/1711.11279

LEARNING CONCEPT ACTIVATION VECTORS

Step 2: Learn the Concept Activations Vectors (CAVs)

- Train a linear classifier to distinguish between the activations of concept's
examples and random ones

. The CAV is the vector orthogonal to the classification boundary v}
i onpen " .f; B) @) )
o = JI = g
MO = TR <
Voo sE 0 i |, ge ' ?,

i\\(\

f(@

@ HO
; l.g'.'r* -'-ﬂ
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https://arxiv.org/abs/1711.11279

ESTING WITH CAVS (T-CAV)

Step 3: Given a sample x, construct a local importance score S¢ x ;(x)
indicating how important concept C is for the k-th output label.

We want S¢ . ;(x) to capture "how much would the prediction of class k
change if | “increase” concept C in sample x?7°

h k (fl (x) + E”lc) — hyg (fl (x))

S x) = lim
c,k,z() A -

(Read as: how much would the prediction of label k change if | take a small step in the direction of concept €?)

@FE',E: o


https://arxiv.org/abs/1711.11279

ESTING WITH CAVS (T-CAV)

Step 3: Given a sample x, construct a local importance score S¢ x ;(x)
indicating how important concept C is for the k-th output label.

We want S¢ . ;(x) to capture "how much would the prediction of class k
change if | “increase” concept C in sample x?7°

This is the same as a directional derivative!

@rHE
2

i.;x M
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https://arxiv.org/abs/1711.11279

ESTING WITH CAVS (T-CAV)

Step 3: Given a sample x, construct a local importance score S¢ x ;(x)
indicating how important concept C is for the k-th output label.

Intermediate representation of
‘%f*"@ at layer [

The rate of change of output function

SC,k,l(x) = Vhl,k (fl(X)) . Ué = Vhl,k(ﬁ( ‘?@A@)) . vé. ijnvggggéen:ndgzgg;it%@ofa
Output CAV for concept

function C (e.g., stripes)

Intuition: “high directional derivative” = “large positive change in class label if we 'increase’ C in input x"
Qi HO
".:ii Al

-J.'.-‘
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https://arxiv.org/abs/1711.11279

ESTING WITH CAVS (T-CAV)

Step 4: Get a global importance score (T-CAV) for each concept by combining
the local sensitivities of samples in an evaluation set:

The T-CAV score is the fraction of samples with label k that are positively influenced by concept C

[{x € Xi: Scx,1 (x) > 0}

TCAVg,,, = A
X Inputs
with label k
QKO
".:ii ol

-J.'.-‘

e


https://arxiv.org/abs/1711.11279

EXAMPLE: DETECTING BIASES WITH T-CAV

You can use T-CAV scores to explore/identify model biases

, o Apron TCAV in inceptionv3 DogsledTCAV in inceptionv3

0.8
0.4
0.2
a0} & ¥ = i * . " &
' fernale  whiteman baby corgis Zzebra siberian_husky

The concept of “female” was found to be significant for predicting the class "Apron’

The concept of “Siberian husky” was found to be significant for predicting the class "“Dogsled” @tHE

RF. - ool s
R Ao

Baeall
(OM Yo 7~ A


https://arxiv.org/abs/1711.11279

-CAV LIMITATIONS

Assuming concepts are linearly separable is a strong and unrealistic
assumption

VS

H

Classes can be linearly separable While concepts may not be separable


https://arxiv.org/abs/2209.11222

CONCEPT ACTIVATION REGIONS

This can be solved by using kernel methods to perform our concept probing on
higher-dimensional space where concepts may be separable

Example x
Black-Box
’ > Model
' X
/
7 2 ! Y
. » :7" ,l( -

Prediction y
Class = Pied Kingfisher

CAR Global Explanations
L Pied Kingfishee

i = . !
Classifier
U Yeiow tiack  Whoe
‘e’{-:v‘: “ — % Braast Color
‘(."_"’ :{V"\>‘: 5‘}5
‘\'._-f !_ g B ._,"vi:’:'
v CAR Feature Importance
Concept
Negatives N 77 —
/ :3 'ft ‘.."-") I . -
W N Representation Space H =
RS u-_l‘ o :


https://arxiv.org/abs/2209.11222

HE POST-HOC STORY SO FAR

Concept
Learning

Do you have training concept labels?

Yes

Can you modify the model?

63



HE POST-HOC STORY SO FAR

Post-hoc methods have a clear set of important limitations:

1. They may fail to properly explain a model = potentially doubling
the source of error!

b4



HE POST-HOC STORY SO FAR

Post-hoc methods have a clear set of important limitations:

1. They may fail to properly explain a model = potentially doubling
the source of error!

In fact, these methods often disagree with each other [1] "-‘E:#
d


https://arxiv.org/abs/2202.01602

HE POST-HOC STORY SO FAR

Post-hoc methods have a clear set of important limitations:

2. Explanations are prone to confirmation bias [1]



https://dl.acm.org/doi/10.1145/3514094.3534164

GOING IN-MODEL

Rather than explaining an already trained model, let the
model explain itself!

Prediction

Explanation



GOING IN-MODEL

Concept
Learning

Do you have training concept labels?

Supervised

Can you modify the model?

68



ALIGNING MACHINES AND HUMANS

M = Machine H = Human
Representational Space Representational Space
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M N H = Human-like Concepts
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https://arxiv.org/abs/2310.16410

ALIGNING MACHINES AND HUMANS

M = Machine H = Human
Representational Space Representational Space


https://arxiv.org/abs/2310.16410

CONCEPT-BASED REASONING

Concept-based reasoning can be framed as a Concept Bottleneck Model [1]

OnOn0

P(C,Y | X) = P(C | X)P(Y | C)

X = Sample Features C = Human-interpretable "Concepts’ Y = Target Task Labels

------

MEEy

ekl

®
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https://arxiv.org/abs/2007.04612

CONCEPT BOTTLENECK MODELS (CBMS)

CBMs decompose a DNN into two functions:

1. A concept encoder g(x) = ¢ predicting concepts from the input features

2. Alabel predictor f(¢) =y predicting task labels from the predicted concepts

Input

Bottleneck

¢
i Cysts )X Prediction

D»[

Scl
O clerosis J Osteoarthritis
f Grade 2

O= Bone Spurs J
Q Narrow joint spacex

p(c | X)

P(Y | ) S

EiGexll)


https://arxiv.org/abs/2007.04612

RAINING A CBM

Given a concept-annotated dataset D = {(xV, c(i),y(i))}]iv:1 we can

train a CBM in three different forms:

(1) Independently (2) Sequentially (3) Jointly
E(x, ¢)~p[BCE(g(x), ©)] (@) E(x o-p[BCE(g(x),0)]  Ex c )~p|CE(f(9(x)),y) + 2-BCE(g(x), 0]
_[E(c, y)~D[CE(f(C); )’)] l Freeze g
(b> IE:(x, y)~D[CE(f(g(x))'y)] @
\ _ﬂ' o
P

@I


https://arxiv.org/abs/2007.04612

CONCEPT-LEVEL INTERVENTIONS

Concept-based reasoning enables powerful human-Al interactions

~

X C
Concept Encoder

Label Predictor
X Cysts

o | cterest OA Grade 2 (mild)

/| Bone Spurs
X | Narrow Joint Space

ﬁ
M

Human Expert

T4



CONCEPT-LEVEL INTERVENTIONS

Concept-based reasoning enables powerful human-Al interactions

Concept Encoder Label Predictor

o SEEEE (&) OA Grade 2 (mild)

/] Bone Spurs
’ y | X] Narrow Joint Space
S 0° %&'\0“ ”
\
& Nl
o eV ﬁ e
Ot o <  Interven¢ / Cysts

= aZ=-=-=-=""" clerosis
C§ ([ g — ).—)OA Grade 3 (moderate)
< | Bone Spurs

Human Expert Narrow Joint Space
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CONCEPT INTERVENTIONS

As we intervene on more concepts, CBM's test error goes down!

0.50

OAIl (Nonlinear c = y)

0.45 -
2 0.40 -
o .35 -
2 0.30
Zo

w

T 0,25 4

0.20 4

—=— Control

=H=- Seguential
—=— Independent

Joint

0.15

0

2 4 6 8 10
Number of concepts intervened

Task (y) error

0.25 A

0.20

0.15

0.10

0.05

CcuB

Joint, from sigmoid
Joint

—5- Sequential

—5— Independent
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https://arxiv.org/abs/2007.04612

ARE CBMS ALL WE NEED?

CBMs are great in a lot of ways:

1. They are simple to understand and provide high-level explanations.

2. They enable test-time interventions that improve their accuracy:.

3. They are very stable, expressive and easy to train.

So are we done?

Short Answer: No Long Answer:
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INTRODUCING CBM'S FRIENDS

Concept
Embedding
Models

Post-hoc

Concept CBMs

Whitening

Probabilistic
CBMs
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SPEED-DATING WITH CBM'S FRIENDS




CONCEPT EMBEDDING MODELS

Limitation Being Addressed

Provided concepts need to be “complete”’ or else we observe a trade-off!

Concept Encoder
CBM Concept Efficiency (CUB)

@ g(x)

/B hy by
] a— — = -
. \ ol lo| |o < _
g relh Q| |Q Q Label Predictor -
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. I__I»-.Il,l____'.l"l__/‘-f» BN N ) »| i fl€) E Cat or dog?
-2 .#IJ'?II .g'f_ll 8 8 Q © | Spotted

0 o) o 8 O | Short fur LEGEND

0 @] O @] - (OHidden Activation

0 W »H D & W OB W H W M0 L S R ) (DConcept-aligned Activation
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Concepts Used In Ir.1|n||1g (%5)

O Output logit
[JTrainable & differentiable model
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CONCEPT EMBEDDING MODELS

Provided concepts need to be “complete”’ or else we observe a trade-off!

Task Accuracy (%)

& © 85 =

B BA
& © B

=]

Limitation Being Addressed

Concept Encoder
CBM Concept Efficiency (CUB) 9(x)
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n a0 50 1) L1 i 0 100 LR S S S
Lonc F';'.Irﬁ- LUsed In Ir.1.|n||1-:; I'"i-".'-] - -"/

Why can’t we just add a bypass from the input to the output?

Label Predictor -

¥y
Long tail
4>.—>I—»f{é:} E Cat or dog?
Spotted .

LEGEND
(OHidden Activation
(DConcept-aligned Activation
O Output logit
[JTrainable & differentiable model
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CONCEPT EMBEDDING MODELS

Limitation Being Addressed

Provided concepts need to be “complete”’ or else we observe a trade-off!

P - i“ - ]

. CBM Concept Efficiency (CUB) QUHCEPE E-:Im:uder A Hyb ri d CB M
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Why can’t we just add a bypass from the input to the output?
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CONCEPT EMBEDDING MODELS

Limitation Being Addressed

Provided concepts need to be “complete”’ or else we observe a trade-off!

Task Accuracy (%)

i

Interventions on CUB

Concept Encoder
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/ el
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[ Truinabie & differentiable model

Interventions do not necessarily work with Hybrid CBMs!
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CONCEPT EMBEDDING MODELS

What we want

Similar performance regardless of the
. . Better performance as we
number of concepts used during training . _
Intervene in more concepts

E &
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CONCEPT EMBEDDING MODELS

Proposed Solution

We can achieve completeness agnosticism by extending the concept representations to
higher-dimensions

Concept
Embeddings
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CONCEPT EMBEDDING MODELS

Proposed Solution

We can achieve completeness agnosticism by extending the concept representations to
higher-dimensions

» ' B i
»
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https://arxiv.org/abs/2209.09056

CONCEPT EMBEDDING MODELS

Proposed Solution

We can achieve intervenability by decomposing €; as the mixture between two
representations {¢;, ¢; }:

N\

N\ —

¢, =p;¢; +(1 —p) ¢

l

@ positive’ concept embeddings

O “Negative” concept embeddings

Concept Embedding Space R™
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CONCEPT EMBEDDING MODELS

Proposed Solution

We can achieve intervenability by decomposing €; as the mixture between two

representations {¢;, ¢; }:

¢, =p;¢f +(1 —p)ie;

@ positive’ concept embeddings

O “Negative” concept embeddings

Concept Embedding Space R™

Determining a concept's activation given ¢; then comes down to determining whether

¢; comes from P(&; | x) or P(¢;] x)


https://arxiv.org/abs/2209.09056

CONCEPT EMBEDDING MODELS

Proposed Solution

You can then intervene on a concept by fixing its representation to the embedding
corresponding to the ground-truth concept label:

f
A4 - .
c; ifc; =1

C;i '=19._ _
Ci) otherwise

We can randomly do these interventions at training time to learn more useful representations!
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CONCEPT EMBEDDING MODELS

Proposed Solution

Learn two functions (¢;, ) mapping x to a positive €; and a negative embedding

Input Embedding Generators Bottleneck
A E é oo
Lt :»H 1 & rediction
HlEm)* P
: : ® : ) Osteoarthritis
At : ' Grade 2
Slae]ey o ®
L L2 s s clerosi
»‘ paLt ¥ @—»@ clerosis
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L J
T
9(x)
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CONCEPT EMBEDDING MODELS

Proposed Solution

This gives you models that are completeness agnostic and intervenable™

CuUB CelebA )
) 100 O
_ - < 13 — i a5 - i O/
g @ Z e
29 . 5 & 40 \
@ = a Y
3o f = g & as p:
5° 8 5 | ] 2 7 2
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2 D L0 0D 0O M H D W “0 10 2 » 9 S 0O M HL P 100 ./
Concepts Used In Training (%) Concepts Used In Training (%) ® Bool-CBM Fuzzy-CBM Hybrid-CBM
e Bool Hybrid
Fuzzy e CEM (ours) . CEM (ours) CEM without RandInt {ours)

*This is particularly true when, during training, you randomly intervene™ on a concept with probability p;p:.

** These sorts of training-time interventions are useful here only because by using embeddings, we can backpropagate

gradients to the concept encoder even when a concept is intervened on (a CBM wouldn't). o1



SPEED-DATING WITH CBM'S FRIENDS




CONCEPT WHITENING (CW)

Limitation Being Addressed

Training a CBM has impractical architectural constraints and requires all training
samples to be concept annotated!

This limits our ability to exploit powerful pre-trained models
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https://www.nature.com/articles/s42256-020-00265-z

INTERPRETABLE-BY-DESIGN NEURAL LAYER

Proposed Solution

Design an interpretable-by-design layer which we can use to replace an equivalent
component in a pre-trained model and quickly fine-tune it to make it interpretable

We will target the commonly used Batch Normalization (BN) layer

" I1I:

.\---
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WHITENING FOR DISENTANGLING CONCEPTS

Intuition

Normalization can somewhat help disentangle concepts in a DNN's latent space

neuron 1
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R 7
neuron 2 i neuron 2
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e et


https://www.nature.com/articles/s42256-020-00265-z

WHITENING FOR DISENTANGLING CONCEPTS

Intuition

Whitening a latent space can allow us to properly separate concepts in the latent space

neuron 1
neyron 1

a b
i/ Solution
neuron 2 : ,-,-E' neuron 2
:;f'
Activation Space Standardized Space

v
E.‘: neron 1
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ROTATING TO ENSURE CONCEPT ALIGNMENT

Approach

More importantly, once an input is whitened, we can apply a rotation to align a specific
concept to a specific axis!

Normalize Whiten Rotate

latent space latent space latent space
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https://www.nature.com/articles/s42256-020-00265-z

CONCEPT WHITENING (CW)

Approach

Given a fine-tuning training set D, = {(x?,y)} and k concept sets D, =
{Xc,, Xc, -+ Xc, }. we will learn a rotation matrix Q € R™*™ by jterating between:

1. Task training step = make sure the downstream task prediction is accurate

2. Concept alignment step = make sure each concept is aligned to a latent activation
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RAINING CW: TASK TRAINING STEP

“Partial” Concept Bottleneck
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RAINING CW: CONCEPT ALIGNMENT STEP

Maximize effect of aligning the j-th activation with samples from the j-th concept
Auxiliary Datasets
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FOUND PROTOTYPES

CW supports the hypothesis that DNNs learn more complex concepts in later layers:

Most Activated

CW the replacing the 2" layer (BN)
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SPEED-DATING WITH CBM'S FRIENDS




POST-HOC CBMS

Limitation Being Addressed

CW is great but is has some key limitations:

1.
2.

t requires a batch norm layer in the pretrained model (read: architecture-specific)

It requires fine-tuning of all the of the model’s weights (read: could be expensive)


https://arxiv.org/abs/2205.15480

POST-HOC CBMS

Proposed Solution

Given a bank of concept activation vectors in a pre-trained model, we learn an
interpretable mapping projected concept scores and a downstream task of interest

A trained DNN Concept Activation Vector Bank Post-hoc CBMs!
/éstripesch;mds cmanc cbluck‘\
+ o = —
& C c RN‘ Xd J
e
Wl


https://arxiv.org/abs/2205.15480

POST-HOC CBMS

Proposed Solution

Goal: learn an interpretable model mapping concept similarity scores to task labels

Concept Activation
Backbone Embeddings

with Post-hoc CBM (PCBM)
Vectors (CAVs)
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POST-HOC CBMS

Proposed Solution

Goal: learn an interpretable model mapping concept similarity scores to task labels
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Step 2: project all training samples to the concept activation space using the cavs lﬂﬁ
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POST-HOC CBMS

Proposed Solution

Goal: learn an interpretable model mapping concept similarity scores to task labels

Vectors (CAVs)

Concept Activation =
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Step 3: learn an interpretable predictor from the concept scores to the task labels


https://arxiv.org/abs/2205.15480

POST-HOC CBMS

Proposed Solution

Goal: learn an interpretable model mapping concept similarity scores to task labels
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POST-HOC CBMS

Goal: learn an interpretable model mapping concept similarity scores to task labels

with
Concept Activation
Vectors (CAVs)
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Proposed Solution

Post-hoc CBM (PCBM)
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Step 4 (optional): fit a residual model if the concepts are incomplete
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POST-HOC CBMS WITHOUT CONCEPT SETS

Post-hoc CBMs can be learnt without concept sets if we have access to
language-based concepts together with a multimodal model
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PROBABILISTIC CBMS

Limitation being addressed

CBMs must predict concepts for all samples even they are ambiguous

Class: Green Jay

Concepts:
forehead color: blue
throat color: black
belly color: yellow
tail pattern: solid

Diverse visual contexts

ambiguity in belly ambiguity in color

piia |
The cross-entropy loss does not encourage the concept predictor to be uncertain J@F-I:FEQ

@HFE =


https://arxiv.org/abs/2306.01574

PROBABILISTIC CBMS

Proposed Solution

Use probabilistic embeddings that enable uncertainty estimation of each concept!

Learn a distribution over concept embeddings and use its variance to estimate uncertainty
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PROBABILISTIC CBMS

Proposed Solution

Each Probabilistic Embedding Module (PEM) generates a mean p,, and a variance o, for
the concept embedding

Concept Embedding Space Class Embedding Space
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PROBABILISTIC CBMS

Proposed Solution

We learn a set of fixed anchor embeddings representing the concept when it is on vs off

"Anchor” embedding representing the concept when it is "on”
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PROBABILISTIC CBMS

Proposed Solution

The distance from the sampled embedding to each anchor can be used to predict a concept

Concept Embedding Space Class Embedding Space
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PROBABILISTIC CBMS

Proposed Solution

A concept’s distribution’s volume can be used to quantify its uncertainty

Concept Embedding Space Class Embedding Space
PEM I e
(Pmbab listic EmbcddmgM dule) concatenation
Mean head / I I \ z(N )
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END OF THE SPEED DATES!

Concept
Embedding
Models

Probabilistic
Post-hoc CBMs

Concept CBMs

Whitening
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DO CBMS PROPERLY LEARN TO EXPLAIN?

Several recent works suggest CBMs may have issues with unwanted leakage

Attending spurious features

Joint model on concept: leq color

Input image Weighted average

‘ Saliency

Saliency maps seem to suggest
concepts are not properly attended
(Margeloiu et al.) [1]

eaking unwanted information

CBMs may have incentives to encode the
entire data representation in the
concepts’ soft predictions
(Mahinpei et al.) [2]

Failing to capture concept locality

Concept ’
b Predictor (> Has Apple = 1
of % g(x) >

Mask Locality Features
(e.g., zero out apple-related pixels)

CBMs may fail to capture a concept's locality
(e.g., physical location) even if it is only found
on a fixed feature subset
(Raman et al.) [3]
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https://arxiv.org/abs/2105.04289
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2401.01259

DO CBMS PROPERLY LEARN TO EXPLAIN?

Many more works have dived deeper into these issues!
Adversarial attacks and defences Studying concept correlations

has bill shape |
all-purpose

has bill length | :
shorter than head —_—

has bill color J ——

black —_—

0.0 0.2 0.4 0.6 0.8 1.0
Model output

Original image Without bill Without head

CBMs concepts predictions can be changed Simple changes to the loss, like loss weighting, can
without affecting the final prediction help avoid CBMs exploiting unwanted correlations
(Sinha et al.) [1] (Heidenmann et al.) [2]

Formalisms and metrics for leakage

L@
f Ao

; ‘ifi#..s é’fﬁ'

MetFICS for Benchmark Formalisation
unwanted suite for of leakage [5]
leakage [3] reasoning

robustness [4]

Several works proposed ways to formalise or
measure concept leakage [3, 4, 5]
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https://www.mdpi.com/1099-4300/25/12/1574

STEPS TOWARDS ADDRESSING LEAKAGE

This have brought forth attempts to address or mitigate the effects of leakage:

GlanceNets
5 A . p—
& X ;= E’}_’r'!""-'
i ) @fEren

[Main |dea] Frame leakage in terms of disentanglement learning
and use an open-set recognition to detect it at inference

Autoregressive CBMs

[Main |dea] Reduce leakage between concepts by modeling
cross-concept relationships using an autoregressive architecture
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https://proceedings.neurips.cc/paper_files/paper/2022/file/944ecf65a46feb578a43abfd5cddd960-Paper-Conference.pdf

RECENT DIRECTIONS

CBMs have become very popular in XAl with several active areas of research:
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RECENT DIRECTIONS

CBMs have become very popular in XAl with several active areas of research:

1. Capturing more complex relationships between concepts and tasks labels

Inference

Input Image x

Concept v Concept
Embeddings Probability *’
Feature e min
Embedding . ! O
: ® ¢
° ®Em - O
3 U3
Feature O
Extractor
F O Class Clasi !
O Embeddjnis U Probability
O min
. 8 y

Eézoncept (m’ c)
Concept Energy

min

Eglnfm.l (c, y)
Concept-Class Energy

B (,y)
Class Energy

Energy-based Concept Bottleneck Models (Xu et al., 2024)


https://arxiv.org/abs/2401.14142

RECENT DIRECTIONS

CBMs have become very popular in XAl with several active areas of research:
1. Capturing more complex relationships between concepts and tasks labels

2. Producing entirely language-based bottlenecks (accepted to this AAAII)

“A large feline
Vision Explanation with large hands Classifier
— Encoder —* Decoder —* sittinginthe —» Her —» “Lynx”
hy 9é snow in a field fo
of grass® Final Prediction §

Explanation €

Explanation Bottleneck Models (Yamaguchi et al.)


https://arxiv.org/abs/2409.17663

RECENT DIRECTIONS

CBMs have become very popular in XAl with several active areas of research:
1. Capturing more complex relationships between concepts and tasks labels
2. Producing entirely language-based bottlenecks (accepted to this AAAII)

3. Exploring concepts in modalities and tasks other than supervised visual tasks

Graph Data Tabular Data RL Tasks Time Series Data

(e.g., Xuanyuan et al.) (e.g.. Espinosa Zarlenga et al.) (e.g. Yeetal) (e.g., Kazhdan et al.)
Op XA 0,

#40, A m—— OO @"’ﬂ@
-:~ — "'a ar
3 w.}# . eoo; 35
@h‘*" A @ﬂ'rEE ............... o ‘m‘ﬁ:
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o
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https://arxiv.org/abs/2208.10609
https://openreview.net/forum?id=TIsrnWpjQ0
https://arxiv.org/abs/2407.15786
https://arxiv.org/abs/2012.06954

UTORIAL OUTLINE i

3. Concept Interventions - 89 .3
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RECALL CONCEPT INTERVENTIONS

Concept interventions enable experts to “inject” knowledge during inference

X C
Concept Encoder Label Predictor
X Cysts
/| Sclerosis ~ -
‘ 5 (¢) OA Grade 2 (mild)
> 4 /] Bone Spurs
’ . X | Narrow Joint Space
A o> 1{\0‘\ .7
& \\ H o .
()
O‘i‘)&Q\ \ . . Intervﬂf _ * ? Cysts
o = —— Sclerosis ~
5 ‘l : f(c) OA Grade 3 (moderate)
7| Bone Spurs
Human Expert X Narrow Joint Space
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SOME CONCEPTS ARE BETTER THAN OTHERS

When intervening on a CBM, it is important to realise that some concepts are:

1. Less informative than others (e.g., redundant w.r.t. other concepts)

2. Less certain than others (e.g., due to occlusions or inherent difficulties)

| How to Tell 2 Raven from 2 Crow

Concept “Belly Color” is partially occluded

To identify a Raven from a Crow, “tail shape”
is more informative than "wing color”
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https://www.birdfy.com/blogs/blogs/how-to-identify-a-crow-and-a-raven-key-features-explained

SOME CONCEPTS ARE BETTER THAN OTHERS

When intervening on a CBM, it is important to realise that some concepts are:

1. Less informative than others (e.g., redundant w.r.t. other concepts)

2. Less certain than others (e.g., due to occlusions or inherent difficulties)

Hence, an intervention's effectiveness depends on the intervened concept!
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SELECTING MEANINGFUL CONCEPTS

Intervention policies select which concept to intervene on next by assigning

each concept ¢; a score s; and selecting concepts in decreasing score order:

Given x and concept predictions ¢, what concept should |
intervene on next to minimize my model’s task uncertainty?
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https://proceedings.mlr.press/v202/shin23a.html

SELECTING MEANINGFUL CONCEPTS

Intervention policies select which concept to intervene on next by assigning

each concept ¢; a score s; and selecting concepts in decreasing score order:

Uncertainty of concept prediction (UCP)

Select the concept ¢; with the highest predicted
entropy s; = H(¢;)
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https://proceedings.mlr.press/v202/shin23a.html

SELECTING MEANINGFUL CONCEPTS

Intervention policies select which concept to intervene on next by assigning

each concept ¢; a score s; and selecting concepts in decreasing score order:

Contribution of concept on target prediction (CCTP)

Select the concept ¢; with the highest contribution on
j=1[% 5 |

target prediction s; =


https://proceedings.mlr.press/v202/shin23a.html

SELECTING MEANINGFUL CONCEPTS

Intervention policies select which concept to intervene on next by assigning

each concept ¢; a score s; and selecting concepts in decreasing score order:

Expected change in target prediction (ECTP)

Select the concept ¢; with the highest expected
change in the target predictive distribution

si = (1 — &) Dg(Pe,=ollP) + €Dk (Pe,=1119)
@E:':':"r'"@
‘-:i’f- o
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SELECTING MEANINGFUL CONCEPTS

Intervention policies select which concept to intervene on next by assigning

each concept ¢; a score s; and selecting concepts in decreasing score order:

Uncertainty of concept prediction (UCP) Contribution of concept on target prediction (CCTP)
Select the concept ¢; with the highest predicted Select the concept ¢; with the Qighest contribution on
entropy s; = H(¢;) target prediction s; = ?:1 ol J;jch) .

Expected change in target prediction (ECTP)

Select the concept ¢; with the highest expected
change in the target predictive distribution

si = (1 — &) Dg(Pe,=ollP) + €Dk (Pe,=1119)

One can think of these policies as proxies for a concept's information content and certainty Ay A TH:
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INTERVENTION POLICIES RESULTS

This leads to significantly different intervention curves:

25
i —+— RAND —»— CCTP —s+— RAND —— CCTP ok % —s— RAND —=— CCTP
ok —— UCP ECTP —e— UCP ECTP —e— UCP ECTP
- \ LCP EUDTP —_ LCP EUDTP —_ i LCP EUDTP
o~ X 34t 2 30k
T 15} ~ <
o , 0 o
= = 3z = sal
Y 10} 7 ]
Y4 Y s
3 2 sof =R 2
= st \A = 3 = = 10f
h \k“ 28}
0-l | |__-. | | - ':h_ | H i | i u-l i i T-_-_: |.
0 20 40 &80 80 100 0 5 10 15 20 0 20 40 60 B0 100
Intervention counts Intervention counts Intervention counts
(a) CUB (b) SkinCon (c) Synthetic
Best performing non-oracle policy is but even the simple

Uncertainty of concept prediction (UCP) is significantly better than the random policy (RAND)

N

N [::
(Intuition: one should select the concept leading to the highest expected change in the task's distribution) -;",‘l;;ﬂ.’], :
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INTERVENTION POLICIES RESULTS

This leads to significantly different intervention curves:

25

—a— RAND —=— CCTP —s— RAND —=— CCTP a0k -5 —s— RAND —=— CCTP
20k i —— UCP ECTP —+— UCP ECTP —— UCP ECTP
= \ LCP EUDTP - LCP EUDTP = |1 LCP EUDTP

o~ X 4f 2 30k
o 15 \ ":'_" -:-
o , o o
= =32 g |
Y10} 7 @
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2 2 sof R 2
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za}
Of . 1 .h__-' e , i ! i { O t ’ N T-__. : o
0 20 40 60 80 100 0 5 10 15 20 0 20 40 60 B0 100
Intervention counts Intervention counts Intervention counts
(a) CUB (b) SkinCon (c) Synthetic

We still observe a significant gap between the best policy and an
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COMBINING POLICIES

It may be possible to shorten this gap by learning a weighting between the

concept uncertainty and the expected change in current prediction policies

Si = a}[(éi) T ,B‘Ev~p(ci|x) [yél:v - 5;” T V(;


https://arxiv.org/abs/2212.07430

COMBINING POLICIES

It may be possible to shorten this gap by learning a weighting between the

concept uncertainty and the expected change in current prediction policies

\f_j

Uncertainty of concept prediction Cost of the intervention

Si = a}[(éi) T ,B‘Ev~p(ci|x) [yc“l:v - 5;” T V(;
-

Expected change to the current predicted label if we were to intervene on c_i based on c_i's current prediction

@ﬁﬁ@
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https://arxiv.org/abs/2212.07430

Can we do any better than this? Can we avoid the need for calculating
computationally expensive scores all concepts?



https://arxiv.org/abs/2212.07430

INSIGHT #1: TRAINING-TIME INCENTIVES

There is a disconnect between how CBMs are trained and how they
are used at test-time when they are intervened on

Train-time Test-time

Predict task
labels from a set

Predict task
labels from a set

i of concepts
of entirely where some are
predicted ground-truth

concepts labels and others

are predicted

During training, concept-based models are not even aware they may be intervened on!

ORE10,
*?r&ﬁﬂ

W

During testing, concept interventions may lead to out-of-distribution bottlenecks for a CBM!


https://arxiv.org/abs/2309.16928

INSIGHT #2: USEFUL TRAINING FEEDBACK

If we know all task and concept labels, we can compute the optimal
greedy concept intervention:

(%, 1, €,y) = argmax, ;e f (3%, 1V 1),

(Translation: Attempt every intervention and select that one maximises the ground truth label's confidence)

This is feedback we have at training time and can use to learn an intervention policy!
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INSIGHT #3: INTERVENTIONS CAN BE DIFFERENTIABLE

When modelling concepts as being a mixture of two learnable
embeddings {c; , c¢; } as in CEMSs, interventions are differentiable:

2\ A —

¢; =pici +(1 —pp) ¢

¢; = (uici + (1 —pp) ¢ + (1 — (e + (1 —wdpY)) ¢

Whether we intervene on the i-th concept (can be relaxed to be in [0,1])


https://arxiv.org/abs/2309.16928

INSIGHT #3: INTERVENTIONS CAN BE DIFFERENTIABLE

When modelling concepts as being a mixture of two learnable
embeddings {c; , c¢; } as in CEMSs, interventions are differentiable:

¢; = (uici + (1 —pp) ¢ + (1 — (e + (1 —wdpY)) ¢

Whether we intervene on the i-th concept (can be relaxed to be in [0,1])

This means an intervention policy deciding y; can be learnt via gradient descent! @"'

h#—-‘—ﬁ


https://arxiv.org/abs/2309.16928

INTERVENTION-AWARE MODELS

Intervention-Aware Concept Embedding Models (IntCEMs)
incorporate these insights into an end-to-end architecture that:

1. Introduces an intervention-aware training loss that encourages
receptiveness to concept interventions at test-time

2. Learns an efficient intervention policy in an end-to-end fashion.


https://arxiv.org/abs/2309.16928

HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

Input CEM Backbone Intervention Trajectory with T ~ p(T) and ;) ~ p(u) C‘D
TS L o L _
Legend
(t)
o g)“ () Trainable Model
'Elzt_ L) y‘;{é[r"”’ H“ '1}) —Pﬂ{!] ' p(ﬂlw“}] C] Loss Cﬂmputatiﬂn
Gumbel-Softmax D Intervention

B e ) )

I ": Sampling Operation

: £(e”) —X—{ CE(y,)/(1++") 3 ,
i=1 " e J
. = 2 - - pred
. : 7e0) J—>—{ 4" CE(y, §)/(1 + ") |
concept

ONHO
.,.|

@Mﬂﬁ
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HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

Input CEM Backbone

Legend
D Trainable Model
| ] Loss Computation

i

*':
(0.0 Byt o0 B

[] intervention
" Sampling Operation

(1) Construct a positive and negative embedding for each training concept
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HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

Intervention Trajectory with T ~ p(T) and x® ~ p(u) @)

Legend
D Trainable Model
| ] Loss Computation

|:] Intervention
" Sampling Operation

(2) Randomly select a subset of concepts which we will initially intervene on and a number of interventions T we will
perform in this training step
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HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

Intervention Trajectory with T ~ p(T) and p® ~p(u) @

= Legend
g L wt).r e gj‘um (] Trainable Model
L; g(x, ', c) i RN _"”r'jfm ’*Pfﬂwm} ) Loss Computation
v Gumbel-Softmax [] Intervention

(t—1) (th (2)
[CE{C-(x,p yC, Y)W ”— ﬁ]'n]l " Sampling Operation

(8) Recursively sample a trajectory of T interventions from this set using a learnable intervention policy. We train this
policy to align to the “oracle” optimal policy.
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HOW TO TRAIN YOUR INTCEM?

This can be done using an end-to-end neural architecture:

Legend
D Trainable Model
| ] Loss Computation

|:] Intervention
't Sampling Operation

ool (@) CE(y,7)/(1 ++7)
:. E{T} - j,r - — ; .-l‘:pl'ml
----- f(&™) 4*[ v CE(y,¥)/(1+v7) ®

(4) Penalise the model more heavily for mispredicting the task label at the end of the intervention trajectory vs
mispredicting the task label at the start of the trajectory

Ltask()’»f(é(o)))+VTLtask(y»f(é(T)))
1+yT

E (x,c,y)~D

150



WHAT DOES ALL OF THIS GIVE YOU?




WHAT DOES ALL OF THIS GIVE YOU?

(1) A model that is much better at receiving test-time feedback

even

Task Accuracy (%)

If concepts are intervened in a random order
100 MNIST-Add MNIST-Add-Incomp X CUB CUB-Incomp CelebA
00
60
90 - 80 %0
60 40
30 80 60
40 20
0 4 8 12 0 2 4 6 8 0 4 8 121620 24 28 0 2 4 6 0 2 4 6
Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened
IntCEM CEM Joint CBM-Logit Joint CBM-Sigmoid Sequential CBEM Independent CBEM

Up to 9% in absolute improvement when 25% of concepts are randomly selected to be intervened on!
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WHAT DOES ALL OF THIS GIVE YOU?

(2) An efficient intervention policy that selects useful concepts to

INtervene on next

IntCEM's Policy! IntCEM's Policy!

) MNIST-Add NIST-Add-Incomp

= « 100

S 975

g i ] 9{]

8 95.0

< 80

4 025 4

S 0 4 8 12 0 2 4 6 8 0 4 81216202428 0 2 4 6 0 2 4 6

Groups Intervened Groups Intervened Groups Intervened Groups Intervened Groups Intervened

Y IntCEM (Random Policy) m IntCEM (BC-Skyline Policy) IntCEM no g (Random Policy)
IntCEM (CooP Policy) % IntCEM (Learnt Policy w)
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CRITICAL LIMITATIONS OF INTERVENTIONS

When intervening, we assume that concept interventions are:

1. Transient: after an intervention is made, it is forgotten

If an intervention is made on a sample x

N S e
] e

The same mistake will be made if x is seen again

X c

Concept Encoder Label Predictor
X| Cysts
/| Sclerosis o
X »|: > CcC) —>»
g( ) 7| Bone Spurs f( )
X | Narrow Joint Space
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CRITICAL LIMITATIONS OF INTERVENTIONS

When intervening, we assume that concept interventions are:

1. Transient: after an intervention is made, it is forgotten

2. Independent: intervening on concept ¢; will not affect other concepts’ values
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RELAXING KEY ASSUMPTIONS

These constraints can be relaxed via clever modelling:

Concept Bottleneck Memory Models Stochastic Concept Bottleneck Models

j"% @ N(@ II) ﬁ
S 2 |r._
- o LR O

Query

Addresses: Transient nature of a concept intervention Addresses: the assumption that concepts are independent
Approach: Introduce a learnable memory module that keeps Approach: Model the predicted concept logits as a normal distribution
previously seen interventions and re-applies them in the future, with a (learnable) non-diagonal covariance.

[1] Steinmann et al. "l earning to Intervene on Concept Bottlenecks." [CML (2024),
[2] Vandenhirtz, | aguna et al. "Stochastic Concept Bottleneck Models." Neur|PS (2024).
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https://arxiv.org/abs/2308.13453
https://arxiv.org/abs/2406.19272

CAN INTERVENTIONS EXTEND BEYOND CBMS?

So far, the concept intervention strategies we have considered

require one to operate on a CBM-like model

Could we potentially extend these ideas to models beyond CBMs?



https://arxiv.org/abs/2401.13544

INJECTING KNOWLEDGE TO BLACK BOXES

Given a black-box model fg(x) = gy (h¢(x)) and a test sample x, we may want to

inject knowledge about the presence or absence of a concept in x at test time



https://arxiv.org/abs/2401.13544

INJECTING KNOWLEDGE TO BLACK BOXES

Given a black-box model fg(x) = gy (h¢(x)) and a test sample x, we may want to

inject knowledge about the presence or absence of a concept in x at test time

If we have a concept-annotated validation set {(x?, ¢V, y')} . we can do this!



https://arxiv.org/abs/2401.13544

BLACK-BOX INTERVENABILITY: PROBING

We first learn a multivariate probe € = é(z) that predicts all concepts

given the latent space z = hg(x) using the annotated validation set
Step 1: Probing

| TERR——

activation vector z @ -f:lﬂ:. @
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BLACK-BOX INTERVENABILITY: EDITING

Given user-provided concept labels ¢’ for sample x, we edit the

representation z = hgy(x) so that it maps to ¢’ as predicted by the probe ¢(2)

St Refrese 1 .
: . i intervention ¢’ ) ) , )
= O - We find a new latent representation z’ by solving
latent spa sion
: C / / /
Yoia, argmin AL (g¢ (2'),c')+d(z,2')
z’
. —
X . . 2 .
i Concept alignment Distance Penalty
“,1———" @ Make the latent representation map to the Keep the new la[ent
set of user-provided concepts ¢’ representation as close as . .
decisioln boundary of q; possible to the original @Iﬁﬂ-@)
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BLACK-BOX INTERVENABILITY: OUTPUT

Finally, fed the edited representation z' to the second part of the DNN to
obtain an updated prediction y’ = g,,(z")

Step 3: Updating Output

1 — P =
/] o pdated
// | : output

activation vector 2’
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WHAT THIS GIVES YOU

This process allows you to improve the task accuracy of a black-box model

when you have extra test-time knowledge in the form of concepts labels

1.00
0.98 —@- Blackbox @ CBM =#= Post hoc CBM

0.96
=l Fine-tuned, MT Fine-tuned, A Fine-tuned, |

AUPR (AwA)

094 % ¥
£

0.921 &

0 20 40 60 80 100
% concepts intervened on

More importantly, you can to be more receptive to this type of interventions by

directly optimizing for an edit's positive effect
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5. Unsupervised Concept Learning @
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HE COST OF BEING GREAT

What if you don't have access to concept supervisions”?

IS THERE
ANYTHING YOU WANT
TO TALK ABOUT?
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HE COST OF BEING GREAT

What if you don't have access to concept supervisions”?

Concept
Learning

Do you have training concept labels?

No

Can you modify the model?
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HE COST OF BEING GREAT

T-CAV requires large sets of examples of each concept of interest:

For example, when finding the influence of the concept “stripes” for a DNN, T-
CAV requires a set of samples that all have the concept “stripes”

But, obtaining concept labels can be expensive and intractable

169



HE COST OF BEING GREAT

Can we extract patches automatically?




AUTOMATIC CONCEPT EXTRACTION (ACE)

Desiderata: We would like to discover concepts / patches that are:

Meaningful Coherent Important

L)
X
40

%‘

-“—

£
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https://arxiv.org/abs/1902.03129

AUTOMATIC CONCEPT EXTRACTION (ACE)

Proposed Solution

(a) Multi-resolution segmentation of images
com¥
. B L

Step 1: Multi-resolution segmentation (why? concepts have different granularities)

e
40

OLI®
o

Desiderata enforced: meaningfulness
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AUTOMATIC CONCEPT EXTRACTION (ACE)

Proposed Solution

(a) Multi-resolution segmentation of images (b) Clustering simdlar segments and removing outliers

—

..l
N
_

Step 2: cluster extracted segments using a hidden layer (which one?) of a CNN as a
feature extractor (why? ensure invariances). Then get rid of outliers (why? noisy!).

e
40

OLI®
o

Desiderata enforced: coherence
173
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AUTOMATIC CONCEPT EXTRACTION (ACE)

Proposed Solution

(a) Multi-resolution segmentation of images (b) Clustering similar segments and removing outliers {c) Computing saliency of concepts

‘ Importance Scores

..l
N
R

Step 3: use T-CAV with the newly discovered concepts to explain the prediction
of the sample of interest!
Desiderata enforced: importance

e
40

OLI®
o
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AUTOMATIC CONCEPT EXTRACTION (ACE)

Lionfish Police Van Basketball

= " What are the most salient discovered
m@ - - concepts for some of the ImageNet classes?

ost Salient

e
e
40,

O]
5o
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AUTOMATIC CONCEPT EXTRACTION (ACE)

Lionfish Police Van Basketball

What are the most salient discovered

@ - . concepts for some of the ImageNet classes?

ACE has also been generalised to learn concepts in Graph
Neural Networks in GCExplainer (Magister et al. 2021) [2] @"""‘}g
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AUTOMATIC CONCEPT EXTRACTION (ACE)

ACE's hyperparameters and processing steps have several limitations:

1. We can never be certain that we properly cover all useful concepts

Important concepts for underrepresented populations could be removed as outliers!
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AUTOMATIC CONCEPT EXTRACTION (ACE)

ACE's hyperparameters and processing steps have several limitations:
1. We can never be certain that we properly cover all useful concepts

2. We won't detect concepts that interact non-linearly with the output labels

Looking at the gradients provides understanding of local (linear) sensitivity

Scia(x) = Vh i (f,(x)) . vé
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AUTOMATIC CONCEPT EXTRACTION (ACE)

Can we optimize accounting for concept
usefulness and non-linear interactions?




COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 1: project the input sample to DNN's intermediate hidden layer ®(x)

Latent Code Encoder
— (Frozen)
L3
X .., - h<R"™
- I‘; : Ve »
oi‘g’ﬁ* ]
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https://arxiv.org/abs/1910.07969

COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 2: randomly initialize a latent, learnable concept bank of k concepts € = [cq, €y, -+, g )"

Latent Code Encoder
— (Frozen)
X ML .. h<R"™
. J\; = Tra,,
9 ’934\ .
1“'. y I b . —
i A—n @ >
. 1-L‘,--=—-—a-1,"|’ﬁ .
W d .
i e
vvvv
(s} Rl‘x
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COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 3: compute a set of concept scores by projecting the input embedding into the concept space

Latent Code Encoder
- (Frozen)
x L - @
E el heR
- »
2e, 1 ‘
1"0 ‘{:'e | ] I = :
ol A— 2x)
. II-L','*-----—--J.\n L] -
|l||I|I | - L]
|\|l_':'. I:,:EI )’ s " *
L] "
vvvv
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COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 4: pass the concepts scores to a learnable model g(s) = h that aims to reconstruct h from 3

Latent Code Encoder
- (Frozen)
L
e heR” h
M — X — 3
i g - $(x) \ :
||I J| - ] 4
@ - et
et
[ I [ -~
]
C e RY™ | — R
Sl g  Reconstruction 1
¢ 9(s) Model :
ConceptMatrix (1) Congept Scores X
e,
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COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 5: use h as the reconstructed hidden layer and predict an output class using f



https://arxiv.org/abs/1910.07969

COMPLETENESS-AWARE CONCEPT EXTRACTION

Proposed Solution

Step 6: maximise a “concept completeness score”

Sup Pyy~v [y = argmax fyr (g(C cl>(x)))] — ar

ne(cq, ..., Cp) =
FA " Py y~v [y — argmax fy’(x) ] — ar
y

Score is ~ 1 if and only if the projection in the concept space preserves all the
information needed to predict y! %‘]ﬂ@,


https://arxiv.org/abs/1910.07969

COMPLETENESS-AWARE CONCEPT EXTRACTION

CCE further encourages discovered concepts to be:
1. Coherent: similar samples should remain close in concept-space

2. Diverse: concept vectors should be as distinct from each other as possible

Z:LI ZxEETck ‘I‘{}[g] " Ck
mK

Zjaék Cj - Ck

R(e) = A m(m — 1)

— Ay
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COMPLETENESS-AWARE CONCEPT EXTRACTION

And it can be applied to different data modalities!

Concept 8 0.0140

M

Concept 20 0.0054

Squirrel

L

\ m
4 ‘
3 7T
R a8 L 8

Table 2: The 4 discovered concepts and some nearest neighbors along with the most frequent words that appear in
top-500 nearest neighbors.

Concept

Rabbit
Concept 7 0.0066

N "
L . N s
[ : 3 »
i 3 ~ &
A | ALY e 21 ) *” /4 7 -

Concept 8 0.0059

il

Bob Cat
Concept 46 0.0035

Concept 7 0.0031

§ Bl
- !
; L)
" o X
2R
: o "

Nearest Neighbors

Frequent words

1

poorly constructed what comes across as interesting is the
wasting my time with a comment but this movie
awful in my opinion there were <UNK> and the

worst (168) ever (69) movie (61) seen (55)
film (50) awful (42) time(40) waste (34)
poorly (26) movies (24) films (18) long (17)

ConceptSHAP

0.280

normally it would earn at least 2 or 3
<UNK> <UNK> is just too dumb to be called
i feel like i was ripped off and hollywood

not (58) movie (39) make (25) too (23)
film (22) even (19) like (18) 2 (16)
never (14) minutes (13) 1 (12) doesn’t (11)

0.306

remember awaiting return of the jedi with almost <UNK>
better than most sequels for tv movies i hate
male because marie has a crush on her attractive

movies (19) like (18) see (16) movie (15)
love (15) good (12) character (11) life (11)
little (10) ever (9) watch (9) first (9)

0.174

new <UNK> <UNK> via <UNK> <UNK> with absolutely hilarious
homosexual and an italian clown <UNK> is an entertaining
stephen <UNK> on the vampire <UNK> as a masterpiece

excellent (50) film (25) perfectly (19) wonderful (19)
perfect (16) hilarious (15) best (13) fun (12)
highly (11) movie (11) brilliant (9) old (9)

0.141
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REMEMBER CONCEPT BOTTLENECKS?

We took care of T-CAV & friends.. What about CBMs family?
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LABEL-FREE CONCEPT BOTTLENECKS

Limitation Being Addressed

CBMs & co require some known concepts, or we have no bottleneck at all!

And post-hoc CBMs still require one to know which concepts are potentially aﬁﬁ‘:
useful for a downstream task! 2

ICLRZ3 CVPRZ3
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LABEL-FREE CONCEPT BOTTLENECKS

Proposed Solution

Why not simply ask GPT for a set of useful concepts for a specific class?

‘List the most important features for
recognizing something as a {class}:”

ICLRZ3 CVPRZ3
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LABEL-FREE CONCEPT BOTTLENECKS

Proposed Solution

Step 1: Generate a concept set by "asking” an LLM

Label-free
CBM

e OL3O OIHO
tep 1: Generate an - -] -1 a1
filter i [ Antartica EEL’“‘: ﬂj{ ‘*"“o:rl
f .1!.'. +'- B‘. '."P W
) | L O% oW
Filtering| butter an . b o
-
e 8 ICLR23 CVPR23
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LABEL-FREE CONCEPT BOTTLENECKS

Proposed Solution

Step 2: Use multi-modal contrastive language model (e.g., CLIP) to compute
similarity of image-text embeddings

Step 2: Compute embedding f(x) &
concept matrix P

Input imgs x,, -, x,

17—

Label-free ﬁ
|}
CBM
L \

Image Concept Matrix @T;‘:‘@

EncE, Inner | Efx,)- Eft,) E (%) - Eflt,,) d ]
Step 1: Generate and Bl S ;.J.. vgw
filter i [ Antartica e Eil) - Edlty) E/(x;) * Exlt,) - -E:L_? “13
a cashier P _ m\. - ‘.'~.
o | aseat Jf"é Ex) - Erlts) .| Eb) -Edt) @) = 2
Filtering| butter ) > an .

dirt
{ markings

ICLRZ3

OREO
A

CVPRZ3
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LABEL-FREE CONCEPT BOTTLENECKS

Proposed Solution

Step 3: Train DNN activations to align with similarity scores predicted by the
contrastive LM

Step 2: Compute embedding f(x) &  Step 3: Compute CEL coe .
concept matrix P by max similarity between f_and P
Input imgs x,, -, X, Embeddings

‘—-' 4 concept 1 (_) 6

Label-free ‘Loa —— |- —— conept2 O] . |O
i Backbone transform : : :

CBM “ f&x) fe(x) = W.f(x) conceptM (O] O

) fGw) felr)  felaw)
-\
Image Concept Matrix @Tﬁ';‘:‘@ @g '@
S %' Inr;er Ei(x,) - Ef{ty) E({x,) - Eq{t,) . -E:"'::r.‘- \ ":g: AF
L8P 1 roduct ” . Qi
filter ' | Antartica s i) ) S sl - -:i.:' “1: ﬂ'..*a"'"
a cashier o~ _ .1.: o +’. B‘I . Yy
| GPT3 — a seat sl EI(XN) 5 Ev(t:) EI(XN) i Ev(tm) @ - nl @ 1- .
' Filtering| butter ﬁ - - . X
dirt
\_markings ICLR23 CVPR23
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LABEL-FREE CONCEPT BOTTLENECKS

Proposed Solution

Step 4: Train a simple (linear) model to map predicted concept scores to tasks

Step 2: Compute embedding f(x) &

concept matrix P

Step 3: Compute CEL ¢

by max similarity between f_and P

concept 1
concept 2

:ept M O O
fe(xy)

Input imgs x,, -, X, Embeddings
‘—mm
Label_free L c— ——
i Backbone transform
CBM F(x) fe(x) = Wef (x) conc
f(x)  flxy)
-\
Image Concept Matrix
EncE, Inner E{x,) - Efft
Step 1: Generate and } product E'::’; : E':t‘;
filter | Antartica e . F11%3) * €Yy
a cashier P
(Grr3 < a seat E?CXE E,(xy) - Elt;)
Filtering| butter T
dirt L—
{ markings

o ([©
Ol .. |10

Efx;) - Eflty)
Ey(x;) « Ex{ty,)

‘ E (xy) - E;lty)

fe(xn)

Step 4: Train a sparse FC
layer W on f(x)

Predicted class ¥

§ = argmaX;e(1.2. .| Zi

—p Bridge, car,

FC layer 1
2= Wefe(x)

(Notations)
x; € R™
f(x) € R?
W, € RYxd
fe(x) € R™
z € R%z
Wy € RIXM

, cloud

Y2 YN

ICLRZ3

@2 3HE

Ry 03
I ",' - e,
@ i “
P P

CVPRZ3
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STRIPPING CBMS TO THEIR BONES

What if we want a CBM, but... we don’t have: I'm backl! }

- Concept supervisions

- Pre-trained contrastive |LMs
What's left??

Y O -
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STRIPPING CBMS TO THEIR BONES

What if we want a CBM, but... we don't have:
- Concept supervisions

- Pre-trained contrastive LMs

What's left??

Unsupervised DNN
activations

ﬁ BTc:y
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STRIPPING CBMS TO THEIR BONES

Can we make a DNN behave
like a proper linear model?




LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:
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LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

1. |Expressiveness] The relevance weights used to make the output prediction
must be able to dynamically adapt depending on the input:

Linear Model Output:  f(¥) = 07%
“‘Linear-ish DNN” Model output:  f(¥) = 8(X)T%

where 8: X' = W is parameterised as a learnable DNN!
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LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

2. |Interpretability] If the features are not interpretable (e.g., individual pixels),
then we should learn a high-level “concept” representation h(x):

Input Output
. N~ e R B | |
\\ / \ /‘; -~ Code - r\ / \ //
— = =\~ -~/ /1 —
\ / \ /
> 1 N A NN NEA - A o
\ / Fo
x = )\ | < 1 /< >\ ] > | f< ] x
S A N S AN I VN S S S N
/ \ / \ / \
A = AN ~ NH/ Oy N H
\ A N N \ /
— — — — — \
\ /- ~ \ /
_l' 4 - ~a 4 \*
! - ~< )
N _/ N /
Yo '

h(x) g(h()) >



LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

2. |Interpretability] If the features are not interpretable (e.g., individual pixels),

then we should learn a high-level “concept” representation h(x):

Linear Model Output:  f(¥) = 07%
“‘Linear-ish DNN”" Model output:  f(¥) = 8(¥)Th(%)

where 8: X - W and h: X — Z are parameterised as a learnable DNNs!
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LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a
sample, as a linear classifier.

What does this imply?
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LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a
sample, as a linear classifier.

v NP > Relevance coefficients adapt with the inputs
Vi f (%) = 0(xX)

but they do so in a stable/slow manner
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LINEARIZING A DNN

If we want to make a DNN act as a linear model while maintaining its
expressive power, we need a few things:

3. [Local Linearity] The model should behave, at least in the neighborhood of a
sample, as a linear classifier.

v NP > Relevance coefficients adapt with the inputs
Vi f (%) = 0(xX)

but they do so in a stable/slow manner

We can encourage this local linearity by including the following training regulariser:

Lreg @) = ||Vef @ ~ 11O @
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SELF-EXPLAINING NEURAL NETS

This is the idea behind Self Explaining Neural Networks (SENNs)!

reconstruction
loss Lj

classification
|:> : loss L,
f |:> E class label
concept encoder fel -5y .\

PR
~
.\ .
. i argregato {I:'"H']
relevance parametrizer #( - :wy) aggregator 4\« 5 Wy
-

@:’% I:D Lo
f_ E - - e *‘ &
# & . @0 @8 explanation
L) L) D B: " R Be
g e _ .
. 8 {(h(x):, 0(x)i)},_,

-
robustness
loss Ly

M
4
M
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https://arxiv.org/abs/1806.07538

SELF-EXPLAINING NEURAL NETS

Step 1: extract concepts from our input distribution:

The concept extractor

h(x): X = Z can be learnt via
an autoencoder model or via
handcrafted feature extractors

10,
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SELF-EXPLAINING NEURAL NETS

Step 2: use DNN to dynamically predict the set of linear weights for each sample:

relevance par:
> .

“,
This is done via a weight m E>
relevance model 8(x): X -» W
that can be learnt in an end-to-
end fashion
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SELF-EXPLAINING NEURAL NETS

Step 3: Add regulariser that will encourage local linearity: Lg(f(z)) := ||V f(z) — 0(z)" J ()|

Relevance coefficients adapt with the inputs
but they do so in a stable/slow manner

®
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SELF-EXPLAINING NEURAL NETS

Step 4: Generate prediction with the linear form 8(x)Th(x). The explanation is the tuple

(concept, relevance weight)

h class labe

1 N .
)) ‘?7 aggregator g( - ;wy)
. et

e == : @8 @@ cexplanation
> E; PR ¥

g ’ s k

X {(h(2):, b))},
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SELF-EXPLAINING NEURAL NETS

When features lack useful semantics, learnt concepts can be understood via prototypical examples:

Input

NN

Saliency

Grad*Input  Int.Grad.

- -
= =
A “

e-LRP

Occlusion

LIME

SENN

-C1
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- C3
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0QQAQO0VQQVC
NNNSNNNdNN

NONXNONOUOT

]

Seeme N e e

0

®
P\
i

210


https://arxiv.org/abs/1806.07538
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CONCEPT-BASED REASONING

We'll focus on two main branches of concept-based reasoning:

Neural symbolic Causal
concept reasoning concept reasoning
PEOPLE DIED
OF CANCER BEFORE

CIGARETTES WERE
INVENTED...

W%*

- 0046765

.50 SMOKING
DOESN’T CAUSE
CANCER!

<
300 W
) +n(C)n(BNO) , M 1 '
¢ Y JEB
4 .
L Y ’.
e * 4 y
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IME TO GET YOUR C*EPTS TOGETHER

Let's say we have a nice set of concepts, what should we use as
classification head?

= ? "»‘-R.%
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IME TO GET YOUR C*EPTS TOGETHER

Let's say we have a nice set of concepts, what should we use as
classification head?
.. what about an opaque DNN?

Back to square 1!
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IME TO GET YOUR C*EPTS TOGETHER

Can we do better?




Let's say we have a nice set of concepts, what should we use as
classification head?
.. what about an opaque DNN?

Concepts

\ [/
\ [/
\ [/

il
0 0

FROM INTERVENTIONS TO LOGIC REASONING

Ry

1
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Let's say we have a nice set of concepts, what should we use as
classification head?
.. what about an opaque DNN?

Concepts

\ [/
\ [/
\ [/

il
o“\ 0
1 0

Ry

1
0

FROM INTERVENTIONS TO LOGIC REASONING

Ereen light=1
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FROM INTERVENTIONS TO LOGIC REASONING

Let's say we have a nice set of concepts, what should we use as
classification head?

.. what about an opaque DNN?

H -
Concepts Task ‘?" .1‘) ambulance=1
1 0 0 ,
ﬂ 0 1 1
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FROM INTERVENTIONS TO LOGIC REASONING

Let's say we have a nice set of concepts, what should we use as
classification head?
.. what about an opaque DNN?

Concepts reen light=1, ambulance=1
oncapt RN

oK 1 0 0

ﬂ 0 1 1

- - 1 1 1

Interventions can recover the

GO full Conditional Probability /
&R - NoT §gF or Lk Truth Table (CPT/TT)!



LOGIC-EXPLAINED NETWORKS (LENS)

Limitation Being Addressed

#interventions required to extract full CPT/TT is exponential in #concepts!



https://arxiv.org/abs/2106.06804

LOGIC-EXPLAINED NETWORKS (LENS)

Proposed Solution

Step 1: Filter concept activations using learnable attention weights a

Learnable Filtered
Concept “attention”  concept
activations weights  activations

1] (8
y 0.9 y Iy

al| O N
& &



https://arxiv.org/abs/2106.06804

LOGIC-EXPLAINED NETWORKS (LENS)

Proposed Solution

Step 2: Minimize the entropy of the attention weights a. Why? Concept set
should be small!

min H(a)
Learnable Filtered
Concept “attention”  concept
activations weights  activations

@ (1] [
y 0.9 y Iy
al| O N
& &



https://arxiv.org/abs/2106.06804

LOGIC-EXPLAINED NETWORKS (LENS)

Proposed Solution

Step 3: Solve task with the selected concepts. Why? Concept set should be relevant!

min H(a)
Learnable Filtered
Concept “attention”  concept
activations weights  activations

1] (8
y 0.9 y Iy

al| O N
& &



https://arxiv.org/abs/2106.06804

LOGIC-EXPLAINED NETWORKS (LENS)

Proposed Solution

Step 4: Derive explanation in DNF from the (empirical) truth table

min H(a)
Learnable Filtered
Concept “attention”  concept
activations weights  activations

- — - Transparent

1 —— symbolic sentence
ﬂ 09 ﬂ Wesissiiasins; [ :
=l | O =l

1
S I >R — &Ry - NOT¥gE OrR LI



https://arxiv.org/abs/2106.06804

LOGIC-EXPLAINED NETWORKS (LENS)

What if we know the logic program,
but we don't have concept supervisions?



https://arxiv.org/abs/2106.06804

NEURAL PROBABILISTIC LOGIC PROGRAMMING

Proposed Solution

Replace task predictor with a pre-defined logic program!

Pre-defined
Unsupervised concepts logic program
(“neural predicates”) - :
— = |
_— =
c M) = NOT C, OR C,

o
~@

@ ¢, "
LH 0.'.. Lxl
SOop L=t
> Iy
'0
3K

7
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https://arxiv.org/abs/1805.10872

Are symbolic classification heads sufficient
for a model to be interpretable?



https://arxiv.org/abs/1805.10872

SEMANTIC & FUNCTIONAL OPACITY

m — &&= NOT C; OR C,



SEMANTIC & FUNCTIONAL OPACITY

[Semantic opacity}

k‘ Danger!

Cq

: >>>&% = NOT Cl OR CQ % Safel
n o i

A symbolic classification head alone does not guarantee semantic transparency
(.. as well as Logistic Regression, Additive Models, Decision Trees, etc...)!
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SEMANTIC & FUNCTIONAL OPACITY

Functional
Semantic opacity
transparency I 1

4 ) T
Concept—.based .
learning iy

. 8
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SEMANTIC & FUNCTIONAL OPACITY

Functional
Semantic opacity

transparency i 1

4 N LePeE
Concept—.based q ..
learning : piy L Mode
L )
Semantic .
s N opacity Funchonalt:ansparency
Symbolic Cy | |
- — -NOT C, OR C
reasoning G Q\% 1 2
\_ A
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SEMANTIC & FUNCTIONAL OPACITY

Can we combine concept-based learning
with symbolic reasoning?




NEURAL-SYMBOLIC CONCEPT REASONING

Proposed Solution

Step 1: DNN generates both concept activations & rule parameters (neural generation)

Concepts

L NOT Cl OR Cz @.!.
{:l'l

{‘

=3
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.1@

¥

ICML23 NeurlPS24 233

Logic rule / linear map
functional transparency
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https://arxiv.org/abs/2304.14068
https://arxiv.org/abs/2407.15527v1

NEURAL-SYMBOLIC CONCEPT REASONING

Proposed Solution

Step 1: DNN generates both concept activations & rule parameters (neural generation)
Step 2: Symbolic engine executes the rule using concept activations (interpretable execution)

Interpretable

Concepts :
execution

semantic transparency

—>|::| — @@ —lp >>>$5%

exec

P
Logic rule / linear map ?:I:‘ ey 3'&;?&
functional transparency ‘:}l' & @ L3 A
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 1: DNN predicts concept activations

Concepts
semantic transparency

&y <02
o T -09
o -0
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https://arxiv.org/abs/2407.15527v1

CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step Z2: DNN predicts embedding to be selected from the latent rulebook

. 236
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 3: DNN decodes selected embedding into 3 states: positive, negative, irrelevant

Concepts
semantic transparency

&y <02
o T -09
o -0

& IO @
Positive 01 1 0

ril|s
i | N Negative 06 0 0 =—> NOT Cl AND CZ

Irrelevant 03 01 Logic rule / linear map
functional transparency
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CONCEPT-BASED MEMORY REASONING

Proposed Solution

Step 4: Execute the rule combining concept states and activations to predict the
output label

Concepts
semantic transparency Inte rpreta ble
‘@l i} 0_2— execution @@
ol I =09 —> (1 —0.2) X 0.9 x F—>"&& = 0.72
W -0
= Ii @
Positive (1 1 0
—p Negative 06 0 0 ’ NOT Cl AND CZ
Irrelevant 03 O 1 Logic rule / linear map @ ':‘.@
functional transparency F ’:%:t":'
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https://arxiv.org/abs/2407.15527v1

CONCEPT-BASED MEMORY REASONING

CMR has 3 key features:

- Universal approximator akin to opaque DNNs (Theorem 4.1)


https://arxiv.org/abs/2407.15527v1

CONCEPT-BASED MEMORY REASONING

C

MR has 3 key features:

- Universal approximator akin to opaque DNNs (Theorem 4.1)

- Provides both local and global interpretability by design

BN

- 3 ) él\lo.,%/\ _'O
v \:Iemory of rules
ETED— Inference mechanisms can

L J only be selected from a finite
set of transparent rules!
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CONCEPT-BASED MEMORY REASONING

C

MR has 3 key features:

Universal approximator akin to opaque DNNs (Theorem 4.1)

Provides both local and global interpretability by design

. The concept memory allows formal verification of properties

"Does a property hold no matter which rule is selected?”

- \ ' rover
memory + selection Memory of rules + if O then @ h Yes /
Given theory T and formula ¢, compute T &= ¢
l l ‘ I AN | - ifd2then > mummm—p No X

Modelchecking Theoremproving  SAT solving
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ARE WE JUST TALKING HOT AIR?
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NEURAL ALGORITHMIC REASONING g,;
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- Algorithmic reasoning L
- + 00D generalization
Abstract inputs Processor Abstract outputs

- - discrete representations

- Neural nets

- - 00D generalization

- + continuous representations T

Natural inputs
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ﬂ
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https://arxiv.org/abs/2105.02761

NEURAL ALGORITHMIC REASONING E"‘E"ﬂ*

P

. Execute algorithms with DNNs
- + 00D generalization (from algorithm exec)
Abstract inputs Processor Abstract outputs

- + adapt to real-world inputs (e.g., images)

o

N 2 2 4
0 7
\ , l\ . N\
+ 9 7 9 -2
7 A(Z)
Natural inputs Natural outputs
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ﬁ |
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NEURAL ALGORITHMIC REASONING E"‘E"ﬂ*

P

. Execute algorithms with DNNs
- + 00D generalization (from algorithm exec)
Abstract inputs Processor Abstract outputs

- + adapt to real-world inputs (e.g., images)

+ (potentially) find new heuristics!

o

N 2 2 4
0 ' 7
A P) ,\ 2 \/
7 + 5 7 5 =5}
How’ z A(z)
Natural inputs Natural outputs
AP E
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NEURAL ALGORITHMIC REASONING

. Execute algorithms with DNNs

Breadth

First
Search

- + 00D generalization (from algorithm exec)
- + adapt to real-world inputs (e.g., images)

-+ (potentially) find new heuristics!
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NEURAL ALGORITHMIC REASONING

. Execute algorithms with DNNs

Breadth

First
Search

- + 00D generalization (from algorithm exec)
- + adapt to real-world inputs (e.g., images)

-+ (potentially) find new heuristics!

Time to
visit Greece!
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CONCEPT-BASED NEURAL ALGORITHMIC

REASONING

. Execute algorithms with DNNs
- + 00D generalization (from algorithm exec)
-+ adapt to real-world inputs (e.g., images)

-+ (potentially) find new heuristics!

Breadth
First ';;
Search

ML Model

Concepts

has been vis.

has vis. neighbor
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CONCEPT-BASED NEURAL ALGORITHMIC

REASONING

. Execute algorithms with DNNs

Breadth
First
Search

- + 00D generalization (from algorithm exec)
- + adapt to real-world inputs (e.g., images)

-+ (potentially) find new heuristics!

Concepts

has been vis.

has vis. neighbor

Logic rule

Interpretable

execution

I—> NOT has been vis. AND has vis. neighbor J

Time to
visit Greece!
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SHOULD INTERPRETABILITY BOTHER ABOUT
CAUSALITY?

We'll focus on two main branches of concept-based reasoning:

Causal
concept reasoning

PEOPLE DIED
OF CANCER BEFORE
CIGARETTES WERE
INVENTED...

.50 SMOKING
DOESN'T CAUSE
CANCER!
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SHOULD INTERPRETABILITY BOTHER ABOUT
CAUSALITY?

Sometimes intervening on wrongly predicted concepts helps

Intervenel @
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J [ /
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SHOULD INTERPRETABILITY BOTHER ABOUT
CAUSALITY?

Sometimes intervening on wrongly predicted concepts helps..
and sometimes it doesn't! &)

Causal analysis can provide us with insightsl|

N
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CAUSAL OPACITY

- Causal reliability: discover causal mechanisms of the data generating process

Data generating

71' mechanism

hit gas

accelerate
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CAUSAL OPACITY

- Causal reliability: discover causal mechanisms of the data generating process

- Causal opacity: discover causal mechanism of a model’s inference process

....................
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task . ., concept
Data generating

’.! mechanism . }}

hit gas accelerate

concept * task

& L
....
....
..........
lllllllllllllll

CBM #1 2ot



CONCEPT-BASED CAUSAL REASONING

CBMs can answer association queries (duh...)

ol

ML Model Association

What if the model sees a green light?
P(brake| light)
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CONCEPT-BASED CAUSAL REASONING

CBMs can answer association queries (duh...)

However, intervening on influences the task, while intervening on & does not!

m Intervention

O O What if | set the light color to red?
P(brake | do(light))

= Y i / Association
- Q Q & w =10 What if the model sees a green light?
— P(brake | light
Intervene! ght)
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CONCEPT-BASED CAUSAL REASONING

Can we measure the causal influence of a concept
on the task?




O]
i
o)

CAUSAL CONCEPT EFFECT ki
Proposed Solution
Step 1: Compute expected value of the task with do(c; = 1)
.
Ll — R E[ brake | do(light = 1) ] = 0.2 [nieryEniion
What if | set the light color to red?
P(brake | do(light))

Association

What if the model sees a green light?
P(brake| light)
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0740
CAUSAL CONCEPT EFFECT £Eky
@rsn
Proposed Solution
Step 2: Compute expected value of the task with do(c; = 0)
__
o Intervention
@) E[ brake | do(light = 1) ] = 0.2
- What if | set the light color to red?
_&_ P(brake | do(light))
-_ Association
'ﬂ: . What if the model sees a green light?
=) E[ brake | do(light =0)] =1 P(brake | light)
&
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CAUSAL CONCEPT EFFECT EiEvE

@3
Proposed Solution
Step 3: Compute difference of expected values: absolute value is proportional to causal effect
CaCE = E| brake | do(light = 1) | — E[ brake | do(light = 0) | = —0.8
light=1
@) E[ brake | do(light = 1) ] = 0.2 Intervention
What if | set the light color to red?
_&_ P(brake | do(light))
ki3 Association
@) E[ brake | do(light =0)] =1 What '“f{;;ii:leelj;h%ee” light?
&
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CAUSAL CONCEPT EFFECT

Proposed Solution

1®

Wi
i

Step 3: Compute difference of expected values: absolute value is proportional to causal effect

__

ﬂ

@) E[ brake | do(cowboy =1)] = 0.5
cowboy=1 _&_

__

ﬂ

=) E[ brake | do(cowboy = 0)] = 0.5
cowboy=0 -&_

Intervention

What if | set the light color to red?
P(brake | do(light))

Association

What if the model sees a green light?
P(brake| light)
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CAUSAL CONCEPT EFFECT EiEvE

@3
Proposed Solution
Step 3: Compute difference of expected values: absolute value is proportional to causal effect
CaCE = E| brake | do(cowboy = 1) | — E[ brake | do(cowboy = 0) ] =0
e
I -
N v |—>’"’- ) E[ brake | do(cowboy =1)] = 0.5 Intervention
What if | set the light color to red?
& P(brake | do(light))

0O
o
2
o
o
5
JEEN
I
|

Association
ﬂ -/
o What if the model sees a green light?
7 — ) = =
@) o I %) E[ brake | do(cowboy = 0)] = 0.5 P(brake | light)

cowboy=0
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COUNTERFACTUAL CBMS

Limitation Being Addressed

CBMs cannot answer counterfactual queries!

ON¥n0; OF..360,
T o A X g 20
pr N
®

a3 XN
3 @ &=
ICLR2b ICML22

What would have been predicted in
the same circumstance had a car
crash be seen?

P(brake | light, crash)

Intervention

What if | set the light color to red?
P(brake| do(light))

Association

What if the model sees a green light?
P(brake| light)
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COUNTERFACTUAL CBMS

Proposed Solution

Step 1. Generate counterfactual concept activations

Counterfactual
concepts

(@)
o

A4 I
898
Sl

A
&%
SININ

B P L

B P L
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0n

ON¥n0; OF..360,
T o A X g 20
pr N
®

a3 XN
3 @ &=
ICLR2b ICML22

What would have been predicted in
the same circumstance had a car
crash be seen?

P(brake | light, crash)

Intervention

What if | set the light color to red?
P(brake| do(light))

Association

What if the model sees a green light?
P(brake| light)

264


https://arxiv.org/abs/2402.01408
https://arxiv.org/abs/2106.12723

OO 00

COUNTERFACTUAL CBMS g"’i o

) .
35 @ &=
ICLR2b ICML22

Proposed Solution

Step 2: Compute causal effect on the task!

What would have been predicted in
C the same circumstance had a car

(@]
1S
0n

A4 D
@ ?
Sl

crash be seen?

P(brake | light, crash)

Intervention

What if | set the light color to red?
P(brake| do(light))

B P L

A
&%
SININ

ﬂ‘i Association
Counterfactual & What if the model sees a green light?
concepts P(brake| light)
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DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions...

I'm back! }
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DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions:

- Concepts are mutually independent

not increase the likelihood of

Intervening on “car crash” does
hitting the brakes!

A1
SN

'm back }

ol
o
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DIRECT COUNTERFACTUAL DEPENDENCE

So far, we have been making 2 strong assumptions:

- Concepts are mutually independent - Concepts are direct causes of the task
Intervening on “car crash” does Intervening on “car crash”
not increase the likelihood of directly causes the car to
hitting the brakes! brake!

I'm back! }
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CONCEPT GRAPH MODELS

Limitation Being Addressed

CBMs (as most XAl methods) assume direct counterfactual dependence!
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CONCEPT GRAPH MODELS

Proposed Solution

Enforce inference through a concept graph!
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CONCEPT GRAPH MODELS

Proposed Solution

Enforce inference through a concept graph!
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CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior

QJ
f&‘ @

- |
@af*'éfz. *fl’g
ICLR2b CleaR24
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CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior
- Extracted from data with causal discovery techniques

JoF JSF %ﬁ
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CONCEPT GRAPH MODELS

Proposed Solution

The concept graph can be:
- Given as a prior

- Extracted from data with causal discovery techniques
- Obtained with differentiable DAG learning

5 %@ e @ aa
q Q‘ "ﬂ",
v [ } & W™ ’*49? G ’%‘g
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ICLR25 ClLeaR?24
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UTORIAL OUTLINE T ‘eo

"J. Future Directions
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AMAZING CONCEPTS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!

- Prototypes (clustering)
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AMAZING CONCEPTS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!
- Prototypes (clustering)

. Symbols (logic, neural-symbolic Al)
apple « red A

M = 0.046765/

30
)+n(C)n(BNC)
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AMAZING CONCEPTS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!
- Prototypes (clustering)
. Symbols (logic, neural-symbolic Al)

- Topic models (semantic analysis)
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AMAZING CONCEPTS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!
- Prototypes (clustering)

. Symbols (logic, neural-symbolic Al)

- Topic models (semantic analysis)

- Factors of variation (disentanglement learning)

Learned
Input representation Output

I Inference
| s e

Generation
=

Slots —

— Latents —
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AMAZING CONCEPTS & WHERE TO FIND THEM

Concept interpretability is not the first nor the only area focusing on concepts!
.. but it has a few key differences:

. Focus on intervenability & different forms of transparency (semantic,
functional, causal)

- For this reason, often different assumptions hold (e.g., concepts don't have to
be independent as in disentanglement learning!)
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OPEN CHALLENGES

|abel-free models are currently not as reliable as supervised ones

- How to effectively intervene in label-free settings?
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OPEN CHALLENGES

|abel-free models are currently not as reliable as supervised ones
- How to effectively intervene in label-free settings?

- How to construct robust annotations without pre-trained domain-specific models?
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OPEN CHALLENGES

Concept-based models are currently not designed nor integrated to scale to large models

. Where (autoregressive, sentence, or paragraph) should we look for/place concepts in large models?

(Gnear ]

- Should large models reason based on concepts? i /{\

Add & Norm
Feed
Forward
Add & Norm

[ Multi-Head
l Attention

Add & Norm
Feed

Forward

N Add & Norm
~{_Add & Norm ook
Multi-Head Multi-Head
Attention Attention
t t 2
\——] J O\ v,
Positional 3 Positional
Encodi 2 @ i
ncoding Encoding
Input Qutput
Embedding Embedding
Inputs Outputs 283

(shifted right)



OPEN CHALLENGES

Concept-based models are currently not designed nor integrated to scale to large models
. Where (autoregressive, sentence, or paragraph) should we look for/place concepts in large models?
. Should large models reason based on concepts?

- Which guidelines should we follow to deploy concept-based models in the wild?

Concept jl>

based
model

End user
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OPEN CHALLENGES

Some concepts are intrinsically hard to represent or intervene on

. How to deal with abstract (e.g., moral) or subjective concepts (e.g., aesthetics)?
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OPEN CHALLENGES

Some concepts are intrinsically hard to represent or intervene on
. How to deal with abstract (e.g., moral) or subjective concepts (e.g., aesthetics)?

- How to construct and intervene on multi-modal concepts?

Interaction with
human beings

) SR o M

DOG
v v Touch (different
Visually: dog image fur types)

™ ™

Sound: Barks
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conceptlearning.github.io,

ESOURCE

Cornerstone papers highlighted in this presentation
Extended bibliography on the tutorial website and in the slide deck’'s appendix
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https://conceptlearning.github.io/

UEO OO
RESOURCES L e
Ofzci " ORI RS

@github @medium

Some XAl libraries implement concept-based techniques (check out tutorial website!)

We are working on PyTorch Concepts (PyC), a library dedicated to concept-based interpretability
- APIs are designed to implement existing models, but also to support the development of new ones
« Currently supports concept-based: data types, layers, interventions, metrics, models

- The PyC team is publishing hands-on tutorials on Medium!

encoder = torch.nn.Sequential(
torch.nn.Linear(n_features, latent_dims),

torch.nn.LeakyRelLU(),
) # generate concept and task predictions
concept_bottleneck = LinearConceptlLayer(latent_dims, [concept_names]) emb = encoder(x_train)
y_predictor = torch.nn.Sequential( c_emb = concept_emb_bottleneck(emb)
torch.nn.Flatten(), c_pred = concept_score_bottleneck(c_emb)
torch.nn.Linear(n_concepts, latent_dims),
torch.nn.LeakyRelLU(),
LinearConceptLayer(latent_dims, [task_names]),

)

model = torch.nn.Sequential(encoder, concept_hottleneck, y_predictor)

c_intervened = CF.intervene(c_pred, c_train, intervention_indexes)
c_mix = CF.concept_embedding_mixture(c_emb, c_intervened)
y_pred = y_predictor(c_mix)
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A FEW THINGS TO BRING BACK HOME!

Thank you for your time! Before leaving, remember that concept-based interpretability:

- is connected to other Al areas, but it focuses on specific research questions (intervenability and

different forms of opacity)
- can make things easier (human interaction)... or worse (need for annotations)

- is a relatively young research field, so there's a lot of work to do for all of us!

Read our Medium stories to implement your first concept-based model in <15 minutes!

OFS.H0 ORI
WAEEY  conceptlearning.github.io/ { 'EE”

® ok
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