
Foundations of 
Interpretable Models
Pietro Barbiero & Mateo Espinosa Zarlenga

pietro.barbiero@ibm.com me466@cam.ac.uk

In collaboration with: Alberto Termine, Mateja Jamnik, Giuseppe Marra

mailto:pietro.barbiero@ibm.com


Who are we?

Mateo Espinosa Zarlenga
Final-year PhD Student

University of Cambridge
me466@cam.ac.uk

Pietro Barbiero
Swiss Postdoctoral Fellow

IBM Research (Switzerland)
pietro.barbiero@ibm.com



Outline

I. What is interpretability?
II. Foundations

1. Assumptions, data structures, and design principles for interpretability
2. Blueprint for interpretable models 

III. Instantiations
1. Instantiating the concept encoder P(C | X)
2. Instantiating the task predictor P(Y | C)

IV. Open questions



Outline

I. What is interpretability?
II. Foundations

1. Assumptions, data structures, and design principles for interpretability
2. Blueprint for interpretable models 

III. Instantiations
1. Instantiating the concept encoder P(C | X)
2. Instantiating the task predictor P(Y | C)

IV. Open questions



Why do we need interpretability in the first place?

● Highly parametric
● Complicated inference steps
● Non-linearities
● Sensitive to initial states and update rules

?input output

“opaque” model



Why do we need interpretability in the first place?

● Highly parametric
● Complicated inference steps
● Non-linearities
● Sensitive to initial states and update rules

1. Blindly using opaque models can lead to all sorts of problems

[1] Kashmir Hill, “Wrongfully Accused by an Algorithm.” The New York Times (2020).

[2] Rachel Goodman, “Why Amazon’s Automated Hiring Tool Discriminated Against Women.” ACLU (2018).

[3] Will Douglas Heaven, “Predictive policing algorithms are racist. They need to be dismantled.” MIT Technology Review (2020).

?input output

“opaque” model

https://www.nytimes.com/2020/06/24/technology/facial-recognition-arrest.html
https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/


Why do we need interpretability in the first place?

1. Blindly using opaque models can lead to all sorts of problems
2. Regulatory/legal constraints:

General Data Protection Regulations (GDPR, 2016)

“The data subject shall have the right not to be subject to a 

decision based solely on automated processing, including 
profiling,…” (Art. 22)

The data subject has the right to “meaningful information about 
the logic involved” in the decision. (Art. 13 and 15)

EU AI Act (2024):

“Any affected person subject to a decision which is 

taken by… a high-risk AI system … shall have the 
right to obtain from the deployer clear and meaningful 

explanations (Art. 86)

[1] GDPR, EU. "Automated individual decision-making, including profiling." (2022).

[2] Act, EU Artificial Intelligence. "The EU Artificial Intelligence Act." (2024).

● Highly parametric
● Complicated inference steps
● Non-linearities
● Sensitive to initial states and update rules

?input output

“opaque” model

https://gdpr-info.eu/art-22-gdpr/
https://gdpr-info.eu/art-22-gdpr/
https://gdpr-info.eu/art-22-gdpr/
https://artificialintelligenceact.eu/


What is interpretability in AI?

“A method is interpretable if a user can correctly and efficiently predict the method’s results” [1]

“Systems are interpretable if their operations can be understood by a human” [2]

“Interpretability is the degree to which an observer can understand the cause of a decision” [3]

“There is no universal, mathematical definition of interpretability, and there never will be” [4]

Informal

Not “actionable”

[1] Kim et al, “Examples are not enough, learn to criticize! criticism for interpretability” NeurIPS (2016).

[2] Biran et al, “Explanation and Justification in Machine Learning: A Survey” IJCAI workshop (2017).

[3] Miller, “Explanation in artificial intelligence: Insights from the social sciences” Artificial Intelligence (2019).

[4] Murphy, “Probabilistic machine learning: Advanced topics” MIT press (2023).

https://papers.nips.cc/paper_files/paper/2016/hash/5680522b8e2bb01943234bce7bf84534-Abstract.html
https://www.cs.columbia.edu/~orb/papers/xai_survey_paper_2017.pdf
https://www.sciencedirect.com/science/article/pii/S0004370218305988
https://probml.github.io/pml-book/book2.html


What is interpretability… in other fields?

“A theory T is interpretable in a theory S if and only if there exists a translation from the language of T into the 
language of S such that every theorem of T is translated into a theorem of S”

Formal

Comes with “strings attached”

[1] Tarski "Undecidable Theories" (1953).

✓

Not contextualized in modern AI

Unclear consequences in modern AI



Problem #1
Lack of formal and “actionable” definition of interpretability.

Research in interpretability is ill-defined.

Research Question #1
Can we provide a general, simple & actionable definition of interpretability in AI?



object features target

Is the model                            interpretable?



Is the model                            interpretable?

Let’s associate:
● “one” to 
● “red” to 
● “even” to 

Relation between the model
and human knowledge

(number theory)!



Is the model                            interpretable?



Is the model                            interpretable?



Is the model                            interpretable?



Is the model                            interpretable?



Is the model                            interpretable?



Is the model                            interpretable?

INFERENCE EQUIVARIANCE

[1] Marconato et al “Interpretability is in the mind of the beholder: A causal framework for human-interpretable representation learning” Entropy (2023).

https://www.mdpi.com/1099-4300/25/12/1574
https://www.mdpi.com/1099-4300/25/12/1574
https://www.mdpi.com/1099-4300/25/12/1574
https://www.mdpi.com/1099-4300/25/12/1574


Consequences:
1. Any function is interpretable

○ But not all functions are easy to interpret by all users!
2. Interpretability is a spectrum

○ Diagram may commute only for a subset of samples
3. Naively verifying interpretability via inference equivariance is intractable

○ We need to scan a table with                      entries
○ With 10x10 pixel images we need more checks than #atoms in observable universe!

4. Many translations exist, but some are “not sound”

not soundsound
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Problem #2
Naively verifying inference equivariance is intractable.

Research Question #2
Can we identify assumptions & principles making inference equiv. tractable?



64x64 pixels

even

Can we make interpretability tractable by compression?



64x64 pixels

even
compression preservation of information

[1] Cayton "Algorithms for manifold learning" Univ. of California at San Diego Tech (2005).

Can we make interpretability tractable by compression?

https://cseweb.ucsd.edu/~lcayton/resexam.pdf


64x64 pixels

even
compression preservation of information

conditional interpretability principle

[1] Cayton "Algorithms for manifold learning" Univ. of California at San Diego Tech (2005).

[2] Pearl “Probabilistic reasoning in intelligent systems: networks of plausible inference” Elsevier (1988).

Can we make interpretability tractable by compression?

https://cseweb.ucsd.edu/~lcayton/resexam.pdf
https://www.sciencedirect.com/book/9780080514895/probabilistic-reasoning-in-intelligent-systems


64x64 pixels

even
compression preservation of information

conditional interpretability principle

[1] Cayton "Algorithms for manifold learning" Univ. of California at San Diego Tech (2005).

[2] Pearl “Probabilistic reasoning in intelligent systems: networks of plausible inference” Elsevier (1988).

[3] Koh et al. "Concept bottleneck models" ICML (2020).

Can we make interpretability tractable by compression?

https://cseweb.ucsd.edu/~lcayton/resexam.pdf
https://www.sciencedirect.com/book/9780080514895/probabilistic-reasoning-in-intelligent-systems
https://arxiv.org/abs/2007.04612


64x64 pixels

even
compression preservation of information

conditional interpretability principle

Complexity (entries in the table) go from                   to 
[1] Cayton "Algorithms for manifold learning" Univ. of California at San Diego Tech (2005).

[2] Pearl “Probabilistic reasoning in intelligent systems: networks of plausible inference” Elsevier (1988).

[3] Koh et al. "Concept bottleneck models" ICML (2020).

Can we make interpretability tractable by compression?

https://cseweb.ucsd.edu/~lcayton/resexam.pdf
https://www.sciencedirect.com/book/9780080514895/probabilistic-reasoning-in-intelligent-systems
https://arxiv.org/abs/2007.04612


Problem #3
Translations may not be sound.

Research Question #3
Can we characterize sound translations?



Problem #3
Translations may not be sound.

Research Question #3
Can we characterize sound translations?

A: Yes! We can use “concepts”!

Research Question #3.1: What is a “concept”?



What is a concept?

Note that:

[1] Goguen "What is a concept?" International Conference on Conceptual Structures (2005).

[2] Ganter at al “Formal concept analysis” Springer (1999).

https://link.springer.com/chapter/10.1007/11524564_4
https://link.springer.com/book/10.1007/978-3-642-59830-2


What is a concept?

Note that:

[1] Goguen "What is a concept?" International Conference on Conceptual Structures (2005).

[2] Ganter at al “Formal concept analysis” Springer (1999).

https://link.springer.com/chapter/10.1007/11524564_4
https://link.springer.com/book/10.1007/978-3-642-59830-2


What is a concept?

Concept — Set of examples and sentences satisfying “closure” condition:

[1] Goguen "What is a concept?" International Conference on Conceptual Structures (2005).

[2] Ganter at al “Formal concept analysis” Springer (1999).

https://link.springer.com/chapter/10.1007/11524564_4
https://link.springer.com/book/10.1007/978-3-642-59830-2


What is a concept?

Concept membership:

Concept CPD:

Probabilistic interpretation:



When is a translation “sound”?

Sound translations 
preserve closure:



When is a translation “sound”?

Sound translations 
preserve closure:



When is a translation “sound”?

Sound translations 
preserve closure:

“Unsound” translations 
do not preserve closure:



Problem #4
Multiple translations may exist.

Research Question #4
How do we choose among a set of sound translations?



What to do when multiple sound translations exist?



We need an “alignment” prior

Reasoning shortcut — “Aligned” translation not identifiable

[1] Melsa “System identification” Academic Press (1971).

[2] Geirhos et al. "Shortcut learning in deep neural networks" Nature Machine Intelligence (2020).

[3] Koh et al. "Concept bottleneck models" ICML (2020).

[4] Cunningham et al. "Sparse autoencoders find highly interpretable features in language models." arXiv preprint (2023).

What to do when multiple sound translations exist?

https://arxiv.org/abs/2004.07780
https://arxiv.org/abs/2007.04612
https://arxiv.org/abs/2309.08600


Design considerations

Concept invariances

Concept equivariances Ground-truth interventions

Do-interventions

Estimate causal effects

Improve model predictions

Compositionality

Sparsity

Human-model
interaction



Blueprint for interpretable models

lossless 
compression

[1] Barbiero, Espinosa Zarlenga et al. (2025). Foundations of Interpretable Models. Under review.

https://arxiv.org/abs/2508.00545


Blueprint for interpretable models

lossless 
compression

alignment

[1] Barbiero, Espinosa Zarlenga et al. (2025). Foundations of Interpretable Models. Under review.

https://arxiv.org/abs/2508.00545


Blueprint for interpretable models

lossless 
compression

Compositional 
& sparse

alignment

[1] Barbiero, Espinosa Zarlenga et al. (2025). Foundations of Interpretable Models. Under review.

https://arxiv.org/abs/2508.00545
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Concept Encoder Alignment

We look at methods based on the main components in the blueprint they modify:

A high-level taxonomy of concept-based interpretability

Task Predictor

Concept-based 
Interpretable 
Architectures

How are concepts represented and aligned? How are tasks predicted?
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For now, we will assume:
1. The task predictor 𝑃(𝑌 | 𝐶; Θ) will be parameterised as a (sparse) linear layer.

2. The parameters Θ are deterministic and learnable variables
1. That is: we assume 𝑃(𝐶, Θ | 𝑋) = 𝑃(𝐶 | 𝑋) 𝑃(Θ | 𝑋) with 𝑃(Θ | 𝑋) being a delta distribution.

3. We will parameterise 𝑃 𝐶 | 𝑋 as a deep neural network 𝑔 𝑥 ; 𝜃𝑔

Instantiating the concept encoder 𝑃(𝐶 | 𝑋)

This allows us to focus on how 𝐏(𝐂 | 𝐗) represents concepts
Concept Encoder



The simplest concept encoder 𝑔(𝑥) represents concepts as bounded scalars:

For example, we may use sigmoidal “probes” for each concept of interest:

First steps: bounded scalar concept representations

𝑔𝑠𝑡𝑟𝑖𝑝𝑒𝑠 𝑥; 𝜃 Ƹ𝑐𝑠𝑡𝑟𝑖𝑝𝑒𝑠 = 0.9

𝑔𝑠𝑡𝑟𝑖𝑝𝑒𝑠 𝑥; 𝜃𝑖 Ƹ𝑐𝑖 ∝ 𝑃 𝐶𝑖 = 1 | 𝒙𝑥

𝑔𝑠𝑡𝑟𝑖𝑝𝑒𝑠 𝑥; 𝜃 Ƹ𝑐𝑠𝑡𝑟𝑖𝑝𝑒𝑠 = 0.1

𝑔𝑐𝑙𝑎𝑤𝑠 𝑥; 𝜃

𝑔𝑐𝑙𝑎𝑤𝑠 𝑥; 𝜃 Ƹ𝑐𝑐𝑙𝑎𝑤𝑠 = 0.75

Ƹ𝑐𝑐𝑙𝑎𝑤𝑠 = 0.2



First steps: bounded scalar concept representations

A Concept Bottleneck Model (CBM) [1] exploits this idea by assuming that:
1. We have a set of binary concepts labels C for each training sample.
2. Each concept in C can be independently predicted from X.
3. The downstream task Y can be perfectly predicted from C alone.

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


First steps: bounded scalar concept representations

CBMs exploit scalar bounded concept representations through two components:
1. A concept encoder 𝑔 𝒙 that predicts binary concepts C from the features X
2. A linear label predictor f(c) that predicts the task Y from the concepts C

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


How to train your CBM: vanilla alignment

Given a dataset 𝒟 = 𝒙 𝑗 , 𝒄 𝑗 , 𝑦 𝑗
𝑗=1

𝑁 we can train a CBM in three different ways:

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


How to train your CBM: vanilla alignment

Given a dataset 𝒟 = 𝒙 𝑗 , 𝒄 𝑗 , 𝑦 𝑗
𝑗=1

𝑁 we can train a CBM in three different ways:

1. Independently: train 𝑔 𝒙 and 𝑓(𝒄) separately.

𝔼 𝒙, 𝒄, y ∼𝒟 BCE 𝑔 𝒙 , 𝒄

𝔼 𝐱, 𝒄, 𝑦 ∼𝒟 CE 𝑓 𝒄 , 𝑦

Align each component’s output to its corresponding 
ground-truth labels using a cross-entropy loss (CE)

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


How to train your CBM: vanilla alignment

Given a dataset 𝒟 = 𝒙 𝑗 , 𝒄 𝑗 , 𝑦 𝑗
𝑗=1

𝑁 we can train a CBM in three different ways:

1. Independently: train 𝑔(𝒙) and 𝑓(𝒄) separately.
2. Sequentially: train 𝑔 𝒙 and then train 𝑓(𝒄) from the concept encoder’s outputs.

𝔼 𝒙, 𝒄, y ∼𝒟 BCE 𝑔 𝒙 , 𝒄 𝔼 𝒙, 𝐜, 𝑦 ∼𝒟 CE 𝑓 𝑔 𝒙 , 𝑦Freeze 𝑔

Train the concept encoder Train the task predictor

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


How to train your CBM: vanilla alignment

Given a dataset 𝒟 = 𝒙 𝑗 , 𝒄 𝑗 , 𝑦 𝑗
𝑗=1

𝑁 we can train a CBM in three different ways:

1. Independently: train 𝑔(𝒙) and 𝑓(𝒄) separately.
2. Sequentially: train 𝑔(𝒙) and then train 𝑓(𝒄) from the concept encoder’s outputs.
3. Jointly: train 𝑔 𝒙 and 𝑓(𝒄) at the same time through a weighted loss.

𝔼 𝒙, 𝒄, 𝑦 ∼𝒟 CE 𝑓 𝑔 𝒙 , 𝑦 + 𝜆 ⋅ BCE 𝑔 𝒙 , 𝒄

Controls how much we value concept alignment vs task alignment

[1] Koh et al. "Concept bottleneck models." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2007.04612


Test-time concept interventions

Notice that this simple architecture already supports some of the powerful human-AI 
interactions we previously mentioned



Test-time concept interventions

This leads to models that can improve their performance when deployed in 
conjunction with a domain expert

CBM

+ =
Domain Expert

[1] Shin et al. ”A Closer Look at the Intervention Procedure of Concept Bottleneck Models." ICML 2023.

[2] Chauhan et al. "Interactive concept bottleneck models." AAAI (2023). AAAI 23ICML 23

https://proceedings.mlr.press/v202/shin23a.html
https://proceedings.mlr.press/v202/shin23a.html
https://arxiv.org/abs/2212.07430


Diversity in concept representations

CBMs are a theoretically useful framework, but they are highly constrained in practice 
because of the information bottleneck their bounded scalar encodings impose

ො𝒄

Data Distribution Bounded Concept 
Representations

Task Prediction

𝑌



Diversity in concept representations

CBMs are a theoretically useful framework, but they are highly constrained in practice 
because of the information bottleneck their bounded scalar encodings impose

A CBM’s task accuracy significantly decreases when its concept set becomes incomplete



Diversity in concept representations

CBMs are a theoretically useful framework, but they are highly constrained in practice 
because of the information bottleneck their bounded scalar encodings impose

A CBM’s task accuracy significantly decreases when its concept set becomes incomplete

How can we design concept representations that can operate in incompleteness?



Dynamic concept embeddings

We can circumvent this by learning dynamic embedding representations that 
represent a concept’s activation using a high-dimensional vector

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056


Dynamic concept embeddings

We can circumvent this by learning dynamic embedding representations that 
represent a concept’s activation using a high-dimensional vector

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056


Dynamic concept embeddings

For example, Concept Embedding Models (CEMs) decompose the concept 
representation ො𝒄𝒊 as the mixture of two embedding representations ො𝒄𝒊+ 𝒙 , ො𝒄𝒊

− 𝒙 :

“Positive” concept embeddings

“Negative” concept embeddings

ො𝒄𝒊
+ 𝐱ො𝒄𝒊 𝒙 = Ƹ𝑝𝑖 𝑥 ො𝒄𝒊

+ 𝒙 + 1 − Ƹ𝑝𝑖 𝑥 ො𝒄𝒊
− 𝒙

Where the probability Ƹ𝑝𝑖 𝒙 = 𝑃(𝑐𝑖 = 1 | 𝒙) of concept 𝑐𝑖 being present in 𝒙 is given by a simple (linear) 
function 𝑠 ො𝒄𝒊

+ 𝒙 , ො𝒄𝒊
− 𝒙 of the positive and negative embeddings aligned via cross-entropy.

[1] Espinosa Zarlenga, Barbiero et al. "Concept embedding models: Beyond the accuracy-explainability trade-off." NeurIPS (2022)

https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056
https://arxiv.org/abs/2209.09056


Dynamic concept embeddings

More recent works have adapted concept embeddings to:
1. Enable better-calibrated uncertainty estimates (Probabilistic CBMs [1])
2. Compute arbitrary concept conditional distributions (Energy-based CBMs [2])
3. Learn ”ask” for effective concept interventions (Intervention-aware CEMs [3])
4. Better generalize within out-of-distribution shifts (MixCEMs [4])

[1] Kim et al. "Probabilistic Concept Bottleneck Models." ICML (2023).

[2] Xu et al. "Energy-based concept bottleneck models: Unifying prediction, concept intervention, and probabilistic interpretations." ICLR (2024).

[3] Espinosa Zarlenga et al. "Learning to receive help: Intervention-aware concept embedding models." NeurIPS (2023)

[4] Espinosa Zarlenga et al. "Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts." ICML (2025).

ProbCBM ECBM IntCEM MixCEM

https://arxiv.org/abs/2306.01574
https://arxiv.org/abs/2306.01574
https://arxiv.org/abs/2401.14142
https://arxiv.org/abs/2401.14142
https://arxiv.org/abs/2401.14142
https://arxiv.org/abs/2401.14142
https://arxiv.org/abs/2309.16928
https://arxiv.org/abs/2309.16928
https://arxiv.org/abs/2309.16928
https://arxiv.org/abs/2309.16928
https://arxiv.org/abs/2504.17921


Recent approaches exploit unbounded scalar representations of large concept sets:
1. Concept Whitening rotates the output of a Batch Normalization layer so that the 

resulting activation scores are axis-aligned with known concepts

(Large) unbounded scalar concept representations

Normalize Whiten Rotate

[1] Chen et al. "Concept whitening for interpretable image recognition." Nature Machine Intelligence 2.12 (2020): 772-782.

https://www.nature.com/articles/s42256-020-00265-z
https://www.nature.com/articles/s42256-020-00265-z
https://www.nature.com/articles/s42256-020-00265-z


Recent approaches exploit unbounded scalar representations of large concept sets:
2. Post-hoc CBMs (PCBMs) project a pre-trained DNN’s latent space into a concept 

score space using linear concept probes

(Large) unbounded scalar concept representations

[1] Yuksekgonul et al. "Post-hoc concept bottleneck models." ICLR (2023).

https://arxiv.org/abs/2205.15480
https://arxiv.org/abs/2205.15480
https://arxiv.org/abs/2205.15480
https://arxiv.org/abs/2205.15480


[1] Oikarinen et al. "Label-Free Concept Bottleneck Models." ICLR (2023).

[2] Yang et al. "Language in a bottle: Language model guided concept bottlenecks for interpretable image classification."CVPR (2023).

(Large) unbounded scalar concept representations

This can be turned into a fully-unsupervised pipeline if we exploit large language 
models as knowledge bases and multimodal embeddings (e.g., CLIP) as annotators:

These are called Label-free CBMs [1] or Language-guided Bottlenecks (LaBos) [2]

“List the most important features for 
recognizing something as a {class}:”

ICLR 23 CVPR 23

https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2304.06129
https://arxiv.org/abs/2211.11158
https://arxiv.org/abs/2211.11158
https://arxiv.org/abs/2211.11158
https://arxiv.org/abs/2211.11158


What about other forms of alignment?

So far, we have assumed that we align concept representations and human-
understandable concepts by:
1. Minimizing a cross-entropy term, or
2. Projecting samples into a direction correlated with each concept (e.g., via CLIP)

[1] Margeloiu et al. "Do concept bottleneck models learn as intended?." ICLR Workshop on Responsible AI (2021).

[2] Mahinpei et al. "Promises and pitfalls of black-box concept learning models." ICML Workshop on Theoretic Foundation, Criticism, and Application of XAI  (2021).  

[3] Raman et al. "Do Concept Bottleneck Models Respect Localities?." TMLR (2025).

Alignment
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What about other forms of alignment?

These alignment mechanisms can lead to unwanted representational leakage

[1] Margeloiu et al. "Do concept bottleneck models learn as intended?." ICLR Workshop on Responsible AI (2021).

[2] Mahinpei et al. "Promises and pitfalls of black-box concept learning models." ICML Workshop on Theoretic Foundation, Criticism, and Application of XAI  (2021).  

[3] Raman et al. "Do Concept Bottleneck Models Respect Localities?." TMLR (2025).

Saliency maps seem to suggest 
concepts do not properly attend 

the right features
(Margeloiu et al., 2021) [1]

CBMs may have incentives to encode 
the entire data representation in the 

concepts’ soft predictions
(Mahinpei et al., 2021) [2]

https://arxiv.org/abs/2105.04289
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2106.13314
https://arxiv.org/abs/2401.01259


[1] Marconato et al. "Glancenets: Interpretable, leak-proof concept-based models." NeurIPS (2022). 

[2] Havasi et al. "Addressing leakage in concept bottleneck models." NeurIPS (2022).

[3] Vandenhirtz, Laguna et al. "Stochastic Concept Bottleneck Models." NeurIPS (2024).

Re-thinking traditional concept alignment

Nevertheless, several works have been proposed to mitigate leakage by:
1. Framing alignment as a disentanglement learning task (e.g., GlanceNets [1])
2. Modeling concept relationships (e.g., Autoregressive CBMs [2] or Stochastic CBMs [3])

Autoregressive CBMsGlanceNets Stochastic CBMs

𝜎−1 ො𝒄

∼ 𝒩 ,

Σ 𝒙𝜇 𝒙

GlanceNets Autoregressive Stochastic

https://arxiv.org/abs/2205.15612
https://arxiv.org/abs/2205.15612
https://arxiv.org/abs/2205.15612
https://arxiv.org/abs/2205.15612
https://arxiv.org/abs/2205.15612
https://proceedings.neurips.cc/paper_files/paper/2022/file/944ecf65a46feb578a43abfd5cddd960-Paper-Conference.pdf
https://arxiv.org/abs/2406.19272
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Instantiating the task predictor 𝑃 𝑌 𝐶; Θ)

So far, we have assumed that the label predictor 𝑃 𝑌 | 𝐶 ; Θ is a linear layer.

Linear models, however, are not very expressive and may struggle to learn complex 
non-linear interactions between concepts and labels.

We will now consider different ways of parameterising 𝑃 Θ| 𝑋 and 𝑃(𝑌 | 𝐶; Θ)

Task Predictor



Powerful interpretable task predictors

A simple way to extend the power of linear task predictors is to make them act linearly 
at least in the concept neighbourhood of each sample x

[1] Alvarez Melis et al. "Towards robust interpretability with self-explaining neural networks." NeurIPS (2018).

Traditional Linear Task Predictor:      𝑓 ො𝒄 ; 𝜽 = 𝛉𝑇ො𝒄

“Linear-ish” Task Predictor:     𝑓 ො𝒄 ; 𝜃 𝒙 = 𝜃 𝐱 𝑇ො𝒄

Where:
1. The distribution 𝑃(Θ | 𝑋) = 𝜃(𝐱) is parameterised as a learnable DNN, and
2. The function 𝜃(𝐱) is encouraged to be “stable” for samples with similar concepts

https://arxiv.org/abs/1806.07538
https://arxiv.org/abs/1806.07538
https://arxiv.org/abs/1806.07538


Neuro-Symbolic task predictors

Another way is to exploit different parameter spaces 𝑃 Θ | X such as symbolic rules



[1] Barbiero et al. "Interpretable neural-symbolic concept reasoning." International Conference on Machine Learning. PMLR, 2023.

[2] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

Another way is to exploit different parameter spaces 𝑃 Θ | X such as symbolic rules

Step 1 (neural generation): Two DNNs generate both concept activations & rule parameters

ICML 23 NeurIPS 24

¬𝐶1 ∨ 𝐶2

Concepts
semantic transparency

Logic rule
functional transparency

Concept Encoder 𝑃 𝐶 𝑋

Rule Generator 𝐏 Θ 𝑋)
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[1] Barbiero et al. "Interpretable neural-symbolic concept reasoning." International Conference on Machine Learning. PMLR, 2023.

[2] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

Another way is to exploit different parameter spaces 𝑃 Θ | X such as symbolic rules

¬𝐶1 ∨ 𝐶2

Concepts
semantic transparency

Logic rule
functional transparency

Step 1 (neural generation): Two DNNs generate both concept activations & rule parameters
Step 2 (interpretable execution): A symbolic engine executes rules using predicted concepts

ICML 23 NeurIPS 24

Concept Encoder 𝑃 𝐶 𝑋

Rule Generator 𝐏 Θ 𝑋)

exec

Interpretable 
execution
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[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

Concepts
Concept Encoder 𝑃 𝐶 𝑋

= 0.2

= 0.9

= 0.1

An example is a Concept-based Memory Reasoning (CMR) where we:

Step 1: Predict a set of bounded scalar concept representations 𝑃(𝐶 | 𝑋) with a DNN
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[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

An example is a Concept-based Memory Reasoning (CMR) where we:

Step 2: Select a rule “embedding” from a learnable ”rulebook” using a DNN
Concepts

Concept Encoder 𝑃 𝐶 𝑋

Rule Selection 𝐏 s 𝑋)

Rulebook
𝑒1

𝑒2

0.2
0.8

~
𝑒2

= 0.2

= 0.9

= 0.1
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[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

An example is a Concept-based Memory Reasoning (CMR) where we:

Step 3: Use a learnable model to decode the rule embedding into three states per concept

𝐶2

¬𝐶1 ∨ 𝐶2

Concepts

Logic rule

Concept Encoder 𝑃 𝐶 𝑋

Rule Selection 𝐏 s 𝑋)

Rulebook
𝑒1

𝑒2

0.2
0.8

~
𝑒2

Rule Decoding 𝐏 Θ 𝑠)

Positive 0.1 1 0
Negative 0.6 0 0
Irrelevant 0.3 0 1

𝐶1 𝐶3

= 0.2

= 0.9

= 0.1
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[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

An example is a Concept-based Memory Reasoning (CMR) where we:

Step 4: Execute the rule combining concept states and concept activations

𝑒2

𝐶2

¬𝐶1 ∨ 𝐶2

Concepts

Logic rule

Concept Encoder 𝑃 𝐶 𝑋

Rule Selection 𝐏 s 𝑋)

Interpretable 
execution

Rulebook
𝑒1

𝑒2

0.2
0.8

~
𝑒2

Rule Decoding 𝐏 Θ 𝑠)

Positive 0.1 1 0
Negative 0.6 0 0
Irrelevant 0.3 0 1

𝐶1 𝐶3

= 0.2

= 0.9

= 0.1

1 − 0.2 × 0.9 × 1

https://arxiv.org/abs/2407.15527
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[1] Debot et al. "Interpretable concept-based memory reasoning." NeurIPS 2024.

Neuro-Symbolic task predictors

These steps enable CMR to:
1. Become a universal approximator akin to opaque DNNs
2. Provide, by design, both local and global interpretability
3. Allow formal verification of desirable properties

https://arxiv.org/abs/2407.15527
https://arxiv.org/abs/2407.15527
https://arxiv.org/abs/2407.15527
https://arxiv.org/abs/2407.15527


Neuro-Symbolic task predictors

Other neuro-symbolic task predictors include:
Logic Explained Networks (LENs)

Deep Concept Reasoner (DCR)

DeepProbLog

Neural Algorithmic Reasoning (NAR)

[1] Ciravegna et al. "Logic explained networks." Artificial Intelligence (2023)

[2] Manhaeve et al. "Deepproblog: Neural probabilistic logic programming." NeurIPS (2018).

[3] Barbiero et al. "Interpretable neural-symbolic concept reasoning." ICML (2023).

[4] Veličković et al. "Neural algorithmic reasoning." Patterns (2021).

https://arxiv.org/abs/2108.05149
https://arxiv.org/abs/1805.10872
https://arxiv.org/abs/2304.14068
https://arxiv.org/abs/2304.14068
https://arxiv.org/abs/2304.14068
https://arxiv.org/pdf/2105.02761
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Challenges and open questions

There are still a lot of significant challenges and open questions in concept-based 
interpretability, particularly on making these models more “real-world-friendly”.



Challenges and open questions: Label-free approaches

Label-free models open the door for practical interpretable models, yet they are 
currently not as reliable as supervised concept-based models

1. How can label-free models be used without domain-specific foundation models?



Challenges and open questions: Label-free approaches

Label-free models open the door for practical interpretable models, yet they are 
currently not as reliable as supervised concept-based models

2. How can we effectively intervene in label-free settings?



Challenges and open questions: Scalability

Concept-based interpretable models have yet to be properly integrated to large scale 
and multimodal models. This raises a lot of important questions:

1. Where should we look for/place concepts in LLMs? Should this be done at a 
token, sentence, paragraph, or text-level?

?

?

?



Challenges and open questions: Scalability

Concept-based interpretable models have yet to be properly integrated to large scale 
and multimodal models. This raises a lot of important questions:

2. What does a ”concept” really mean in textual inputs? What about in other 
modalities such as genomics, finance, and law?

Graph Data
(e.g., Xuanyuan et al.)

RL Tasks
(e.g., Ye et al.)

Tabular Data
(e.g., Espinosa Zarlenga et al.)

Time Series Data
(e.g., Kazhdan et al.)

[1] Xuanyuan al. "Global concept-based interpretability for graph neural networks via neuron analysis." AAAI (2023).

[2] Espinosa Zarlenga et al. "Tabcbm: Concept-based interpretable neural networks for tabular data." TMLR (2024).

[3] Ye et al. "Concept-based interpretable reinforcement learning with limited to no human labels." ICML (2024).

[4] Kazhdan et al. "MEME: generating RNN model explanations via model extraction." arXiv (2020).

https://arxiv.org/abs/2208.10609
https://arxiv.org/abs/2208.10609
https://arxiv.org/abs/2208.10609
https://openreview.net/forum?id=TIsrnWpjQ0
https://openreview.net/forum?id=TIsrnWpjQ0
https://openreview.net/forum?id=TIsrnWpjQ0
https://arxiv.org/abs/2407.15786
https://arxiv.org/abs/2407.15786
https://arxiv.org/abs/2407.15786
https://arxiv.org/abs/2012.06954


Challenges and open questions: Scalability

Concept-based interpretable models have yet to be properly integrated to large scale 
and multimodal models. This raises a lot of important questions:

3. Can we even scale concept-based architectures to current large model standards?

[1] Sun et al. "Concept bottleneck large language models." ICLR (2025).

Concept Bottleneck LLMs
(e.g., Sun et al.)



Conclusion: Concepts and their role in interpretability

Today we:
1. Argued that interpretability can be thought as a form of “inference equivariance”
2. Showed that verifying this equivariance is intractable unless we rely on 

compressing our input space into a set of “concepts”
3. Proposed a blueprint for designing interpretable models formed by (1) a concept 

encoder, (2) an alignment mechanism, and (3) a label predictor
4. Discussed several instantiations of this blueprint across the literature



Further resources: Website and library

1. Website of a longer iteration of this tutorial (extended bibliography and slides):

conceptlearning.github.io

2. PyTorch Concepts (PyC), tutorials and library for concept-based interpretability:

pyc-team.github.io/pyc-book/intro.html

Thank you, grazie, gracias for your time!
Contact: pietro.barbiero@ibm.com and me466@cam.ac.uk
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